These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
101 related items for PubMed ID: 10486252
1. Cyclic AMP mediates EDHF-type relaxations of rabbit jugular vein. Griffith TM, Taylor HJ. Biochem Biophys Res Commun; 1999 Sep 16; 263(1):52-7. PubMed ID: 10486252 [Abstract] [Full Text] [Related]
2. Gap junction-dependent increases in smooth muscle cAMP underpin the EDHF phenomenon in rabbit arteries. Taylor HJ, Chaytor AT, Edwards DH, Griffith TM. Biochem Biophys Res Commun; 2001 May 11; 283(3):583-9. PubMed ID: 11341764 [Abstract] [Full Text] [Related]
3. Comparison of glycyrrhetinic acid isoforms and carbenoxolone as inhibitors of EDHF-type relaxations mediated via gap junctions. Chaytor AT, Marsh WL, Hutcheson IR, Griffith TM. Endothelium; 2000 May 11; 7(4):265-78. PubMed ID: 11201524 [Abstract] [Full Text] [Related]
4. Inhibition of the gap junctional component of endothelium-dependent relaxations in rabbit iliac artery by 18-alpha glycyrrhetinic acid. Taylor HJ, Chaytor AT, Evans WH, Griffith TM. Br J Pharmacol; 1998 Sep 11; 125(1):1-3. PubMed ID: 9776336 [Abstract] [Full Text] [Related]
5. Nitric oxide-independent relaxations to acetylcholine and A23187 involve different routes of heterocellular communication. Role of Gap junctions and phospholipase A2. Hutcheson IR, Chaytor AT, Evans WH, Griffith TM. Circ Res; 1998 Sep 11; 84(1):53-63. PubMed ID: 9915774 [Abstract] [Full Text] [Related]
7. Gap junction-dependent and -independent EDHF-type relaxations may involve smooth muscle cAMP accumulation. Chaytor AT, Taylor HJ, Griffith TM. Am J Physiol Heart Circ Physiol; 2002 Apr 11; 282(4):H1548-55. PubMed ID: 11893592 [Abstract] [Full Text] [Related]
8. Replacement of connexin 43 by connexin 32 in a knock-in mice model attenuates aortic endothelium-derived hyperpolarizing factor-mediated relaxation. López D, Rodríguez-Sinovas A, Agulló E, García A, Sánchez JA, García-Dorado D. Exp Physiol; 2009 Oct 11; 94(10):1088-97. PubMed ID: 19617266 [Abstract] [Full Text] [Related]
9. Mechanisms underlying the impaired EDHF-type relaxation response in mesenteric arteries from Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Matsumoto T, Kobayashi T, Kamata K. Eur J Pharmacol; 2006 May 24; 538(1-3):132-40. PubMed ID: 16678154 [Abstract] [Full Text] [Related]
10. Role of voltage-dependent potassium channels and myo-endothelial gap junctions in 4-aminopyridine-induced inhibition of acetylcholine relaxation in rat carotid artery. Gupta PK, Subramani J, Leo MD, Sikarwar AS, Parida S, Prakash VR, Mishra SK. Eur J Pharmacol; 2008 Sep 04; 591(1-3):171-6. PubMed ID: 18577383 [Abstract] [Full Text] [Related]
11. Endothelium-derived relaxing factor-mediated vasodilation in mouse mesenteric vascular beds. Fujiwara H, Wake Y, Hashikawa-Hobara N, Makino K, Takatori S, Zamami Y, Kitamura Y, Kawasaki H. J Pharmacol Sci; 2012 Sep 04; 118(3):373-81. PubMed ID: 22450195 [Abstract] [Full Text] [Related]
12. Augmented endothelium-derived hyperpolarizing factor-mediated relaxations attenuate endothelial dysfunction in femoral and mesenteric, but not in carotid arteries from type I diabetic rats. Shi Y, Ku DD, Man RY, Vanhoutte PM. J Pharmacol Exp Ther; 2006 Jul 04; 318(1):276-81. PubMed ID: 16565165 [Abstract] [Full Text] [Related]
13. Mediation of EDHF-induced reduction of smooth muscle [Ca(2+)](i) and arteriolar dilation by K(+) channels, 5,6-EET, and gap junctions. Ungvari Z, Koller A. Microcirculation; 2001 Aug 04; 8(4):265-74. PubMed ID: 11528534 [Abstract] [Full Text] [Related]
14. Both endothelium and afferent nerve endings play a role in acetylcholine-induced renal vasodilation. Ay I, Tuncer M. Life Sci; 2006 Jul 24; 79(9):877-82. PubMed ID: 16616212 [Abstract] [Full Text] [Related]
15. Endothelial potassium channels, endothelium-dependent hyperpolarization and the regulation of vascular tone in health and disease. Coleman HA, Tare M, Parkington HC. Clin Exp Pharmacol Physiol; 2004 Sep 24; 31(9):641-9. PubMed ID: 15479173 [Abstract] [Full Text] [Related]
16. Inhibition of acetylcholine-induced EDHF response by elevated glucose in rat mesenteric artery. Ozkan MH, Uma S. Life Sci; 2005 Nov 19; 78(1):14-21. PubMed ID: 16125203 [Abstract] [Full Text] [Related]
17. Critical role of gap junctions in endothelium-dependent hyperpolarization in rat mesenteric arteries. Goto K, Fujii K, Kansui Y, Abe I, Iida M. Clin Exp Pharmacol Physiol; 2002 Jul 19; 29(7):595-602. PubMed ID: 12060103 [Abstract] [Full Text] [Related]
18. The endothelial component of cannabinoid-induced relaxation in rabbit mesenteric artery depends on gap junctional communication. Chaytor AT, Martin PE, Evans WH, Randall MD, Griffith TM. J Physiol; 1999 Oct 15; 520 Pt 2(Pt 2):539-50. PubMed ID: 10523421 [Abstract] [Full Text] [Related]
19. Characterization of nitric oxide- and prostaglandin-independent relaxation in response to acetylcholine in rabbit renal artery. Kagota S, Yamaguchi Y, Nakamura K, Kunitomo M. Clin Exp Pharmacol Physiol; 1999 Oct 15; 26(10):790-6. PubMed ID: 10549403 [Abstract] [Full Text] [Related]
20. Endothelium-derived hyperpolarizing factor-mediated renal vasodilatory response is impaired during acute and chronic hyperhomocysteinemia. De Vriese AS, Blom HJ, Heil SG, Mortier S, Kluijtmans LA, Van de Voorde J, Lameire NH. Circulation; 2004 May 18; 109(19):2331-6. PubMed ID: 15117854 [Abstract] [Full Text] [Related] Page: [Next] [New Search]