These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


461 related items for PubMed ID: 10493506

  • 1. Stromal cell oxidation: a mechanism by which tumors obtain vitamin C.
    Agus DB, Vera JC, Golde DW.
    Cancer Res; 1999 Sep 15; 59(18):4555-8. PubMed ID: 10493506
    [Abstract] [Full Text] [Related]

  • 2. Increased facilitated transport of dehydroascorbic acid without changes in sodium-dependent ascorbate transport in human melanoma cells.
    Spielholz C, Golde DW, Houghton AN, Nualart F, Vera JC.
    Cancer Res; 1997 Jun 15; 57(12):2529-37. PubMed ID: 9192836
    [Abstract] [Full Text] [Related]

  • 3. Vitamin C uptake and recycling among normal and tumor cells from the central nervous system.
    Astuya A, Caprile T, Castro M, Salazar K, García Mde L, Reinicke K, Rodríguez F, Vera JC, Millán C, Ulloa V, Low M, Martínez F, Nualart F.
    J Neurosci Res; 1997 Jun 15; 79(1-2):146-56. PubMed ID: 15578707
    [Abstract] [Full Text] [Related]

  • 4. Mammalian facilitative hexose transporters mediate the transport of dehydroascorbic acid.
    Vera JC, Rivas CI, Fischbarg J, Golde DW.
    Nature; 1993 Jul 01; 364(6432):79-82. PubMed ID: 8316303
    [Abstract] [Full Text] [Related]

  • 5. Cellular vitamin C accumulation in the presence of copper.
    Kuo SM, Tan D, Boyer JC.
    Biol Trace Elem Res; 2004 Aug 01; 100(2):125-36. PubMed ID: 15326362
    [Abstract] [Full Text] [Related]

  • 6. Human choroid plexus papilloma cells efficiently transport glucose and vitamin C.
    Ulloa V, García-Robles M, Martínez F, Salazar K, Reinicke K, Pérez F, Godoy DF, Godoy AS, Nualart F.
    J Neurochem; 2013 Nov 01; 127(3):403-14. PubMed ID: 23647458
    [Abstract] [Full Text] [Related]

  • 7. Vitamin C enters mouse T cells as dehydroascorbic acid in vitro and does not recapitulate in vivo vitamin C effects.
    Maeng HG, Lim H, Jeong YJ, Woo A, Kang JS, Lee WJ, Hwang YI.
    Immunobiology; 2009 Nov 01; 214(4):311-20. PubMed ID: 19327547
    [Abstract] [Full Text] [Related]

  • 8. Vitamin C enters mitochondria via facilitative glucose transporter 1 (Glut1) and confers mitochondrial protection against oxidative injury.
    KC S, Cárcamo JM, Golde DW.
    FASEB J; 2005 Oct 01; 19(12):1657-67. PubMed ID: 16195374
    [Abstract] [Full Text] [Related]

  • 9. Interaction of respiratory burst and uptake of dehydroascorbic acid in differentiated HL-60 cells.
    Laggner H, Goldenberg H.
    Biochem J; 2000 Jan 15; 345 Pt 2(Pt 2):195-200. PubMed ID: 10620494
    [Abstract] [Full Text] [Related]

  • 10. Distinct mechanisms of transport of ascorbic acid and dehydroascorbic acid in intestinal epithelial cells (IEC-6).
    Fujita I, Akagi Y, Hirano J, Nakanishi T, Itoh N, Muto N, Tanaka K.
    Res Commun Mol Pathol Pharmacol; 2000 Jan 15; 107(3-4):219-31. PubMed ID: 11484876
    [Abstract] [Full Text] [Related]

  • 11. Efflux of hepatic ascorbate: a potential contributor to the maintenance of plasma vitamin C.
    Upston JM, Karjalainen A, Bygrave FL, Stocker R.
    Biochem J; 1999 Aug 15; 342 ( Pt 1)(Pt 1):49-56. PubMed ID: 10432299
    [Abstract] [Full Text] [Related]

  • 12. Human HL-60 myeloid leukemia cells transport dehydroascorbic acid via the glucose transporters and accumulate reduced ascorbic acid.
    Vera JC, Rivas CI, Zhang RH, Farber CM, Golde DW.
    Blood; 1994 Sep 01; 84(5):1628-34. PubMed ID: 8068952
    [Abstract] [Full Text] [Related]

  • 13. Dehydroascorbic acid uptake and intracellular ascorbic acid accumulation in cultured Müller glial cells (TR-MUL).
    Hosoya K, Nakamura G, Akanuma S, Tomi M, Tachikawa M.
    Neurochem Int; 2008 Jun 01; 52(7):1351-7. PubMed ID: 18353508
    [Abstract] [Full Text] [Related]

  • 14. Vitamin C crosses the blood-brain barrier in the oxidized form through the glucose transporters.
    Agus DB, Gambhir SS, Pardridge WM, Spielholz C, Baselga J, Vera JC, Golde DW.
    J Clin Invest; 1997 Dec 01; 100(11):2842-8. PubMed ID: 9389750
    [Abstract] [Full Text] [Related]

  • 15. A family of mammalian Na+-dependent L-ascorbic acid transporters.
    Tsukaguchi H, Tokui T, Mackenzie B, Berger UV, Chen XZ, Wang Y, Brubaker RF, Hediger MA.
    Nature; 1999 May 06; 399(6731):70-5. PubMed ID: 10331392
    [Abstract] [Full Text] [Related]

  • 16. Involvement of oxidative stress in ascorbate-induced proapoptotic death of PC12 cells.
    Song JH, Shin SH, Wang W, Ross GM.
    Exp Neurol; 2001 Jun 06; 169(2):425-37. PubMed ID: 11358456
    [Abstract] [Full Text] [Related]

  • 17. Differential effects and transport kinetics of ascorbate derivatives in leukemic cell lines.
    Koh WS, Lee SJ, Lee H, Park C, Park MH, Kim WS, Yoon SS, Park K, Hong SI, Chung MH, Park CH.
    Anticancer Res; 1998 Jun 06; 18(4A):2487-93. PubMed ID: 9703897
    [Abstract] [Full Text] [Related]

  • 18. Studies with low micromolar levels of ascorbic and dehydroascorbic acid fail to unravel a preferential route for vitamin C uptake and accumulation in U937 cells.
    Azzolini C, Fiorani M, Guidarelli A, Cantoni O.
    Br J Nutr; 2012 Mar 06; 107(5):691-6. PubMed ID: 21794197
    [Abstract] [Full Text] [Related]

  • 19. 6-Bromo-6-deoxy-L-ascorbic acid: an ascorbate analog specific for Na+-dependent vitamin C transporter but not glucose transporter pathways.
    Corpe CP, Lee JH, Kwon O, Eck P, Narayanan J, Kirk KL, Levine M.
    J Biol Chem; 2005 Feb 18; 280(7):5211-20. PubMed ID: 15590689
    [Abstract] [Full Text] [Related]

  • 20. Colony-stimulating factors signal for increased transport of vitamin C in human host defense cells.
    Vera JC, Rivas CI, Zhang RH, Golde DW.
    Blood; 1998 Apr 01; 91(7):2536-46. PubMed ID: 9516155
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 24.