These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


319 related items for PubMed ID: 10497021

  • 1. Facilitation of group I splicing in vivo: misfolding of the Tetrahymena IVS and the role of ribosomal RNA exons.
    Nikolcheva T, Woodson SA.
    J Mol Biol; 1999 Sep 24; 292(3):557-67. PubMed ID: 10497021
    [Abstract] [Full Text] [Related]

  • 2. Effect of 5-fluorouracil substitution on the self-splicing activity of Tetrahymena ribosomal RNA.
    Danenberg PV, Shea LC, Danenberg K.
    Cancer Res; 1990 Mar 15; 50(6):1757-63. PubMed ID: 2407343
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Analysis of rate-determining conformational changes during self-splicing of the Tetrahymena intron.
    Emerick VL, Pan J, Woodson SA.
    Biochemistry; 1996 Oct 15; 35(41):13469-77. PubMed ID: 8873616
    [Abstract] [Full Text] [Related]

  • 5. Intracellular folding of the Tetrahymena group I intron depends on exon sequence and promoter choice.
    Koduvayur SP, Woodson SA.
    RNA; 2004 Oct 15; 10(10):1526-32. PubMed ID: 15337845
    [Abstract] [Full Text] [Related]

  • 6. The guanosine binding site of the Tetrahymena ribozyme.
    Michel F, Hanna M, Green R, Bartel DP, Szostak JW.
    Nature; 1989 Nov 23; 342(6248):391-5. PubMed ID: 2685606
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Folding intermediates of a self-splicing RNA: mispairing of the catalytic core.
    Pan J, Woodson SA.
    J Mol Biol; 1998 Jul 24; 280(4):597-609. PubMed ID: 9677291
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Mechanism of recognition of the 5' splice site in self-splicing group I introns.
    Garriga G, Lambowitz AM, Inoue T, Cech TR.
    Nature; 1998 Jul 24; 322(6074):86-9. PubMed ID: 3636598
    [Abstract] [Full Text] [Related]

  • 12. Exon sequences distant from the splice junction are required for efficient self-splicing of the Tetrahymena IVS.
    Woodson SA.
    Nucleic Acids Res; 1992 Aug 11; 20(15):4027-32. PubMed ID: 1508687
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Deletion of nonconserved helices near the 3' end of the rRNA intron of Tetrahymena thermophila alters self-splicing but not core catalytic activity.
    Barfod ET, Cech TR.
    Genes Dev; 1988 Jun 11; 2(6):652-63. PubMed ID: 3417146
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. The effect of long-range loop-loop interactions on folding of the Tetrahymena self-splicing RNA.
    Pan J, Woodson SA.
    J Mol Biol; 1999 Dec 10; 294(4):955-65. PubMed ID: 10588899
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Self-splicing of Tetrahymena rRNA can proceed with phosphorothioate substitution at the splice sites.
    Deeney CM, Eperon IC, Potter BV.
    Nucleic Acids Symp Ser; 1987 Dec 10; (18):277-80. PubMed ID: 3697141
    [Abstract] [Full Text] [Related]

  • 20. 5' exon requirement for self-splicing of the Tetrahymena thermophila pre-ribosomal RNA and identification of a cryptic 5' splice site in the 3' exon.
    Price JV, Engberg J, Cech TR.
    J Mol Biol; 1987 Jul 05; 196(1):49-60. PubMed ID: 2443717
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.