These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


166 related items for PubMed ID: 10504271

  • 61.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 62.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 63.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 64. Protein posttranslational modification (PTM) by glycation: Role in lens aging and age-related cataractogenesis.
    Fan X, Monnier VM.
    Exp Eye Res; 2021 Sep; 210():108705. PubMed ID: 34297945
    [Abstract] [Full Text] [Related]

  • 65. Immunochemical detection of glycated beta- and gamma-crystallins in lens and their circulating autoantibodies (IgG) in streptozocin induced diabetic rat.
    Ranjan M, Nayak S, Rao BS.
    Mol Vis; 2006 Sep 13; 12():1077-85. PubMed ID: 17093392
    [Abstract] [Full Text] [Related]

  • 66. Decrease in vitamin C concentration in human lenses during cataract progression.
    Tessier F, Moreaux V, Birlouez-Aragon I, Junes P, Mondon H.
    Int J Vitam Nutr Res; 1998 Sep 13; 68(5):309-15. PubMed ID: 9789763
    [Abstract] [Full Text] [Related]

  • 67. [Experimental study of influence of different damaging factors on lens. Report 3. Changes of lens protein composition].
    Kurova VS, Muranov KO, Polianskiĭ NB, Sheremet NL, Fedorov AA, Bannik KI, Polunin GS, Ostrovskiĭ MA.
    Vestn Oftalmol; 2012 Sep 13; 128(1):17-9. PubMed ID: 22741289
    [Abstract] [Full Text] [Related]

  • 68. Altered patterns of phosphorylation in cultured mouse lenses during development of buthionine sulfoximine cataracts.
    Li W, Calvin HI, David LL, Wu K, McCormack AL, Zhu GP, Fu SC.
    Exp Eye Res; 2002 Sep 13; 75(3):335-46. PubMed ID: 12384096
    [Abstract] [Full Text] [Related]

  • 69. Suppressive effect of caffeic acid and its derivatives on the generation of UVA-induced reactive oxygen species in the skin of hairless mice and pharmacokinetic analysis on organ distribution of caffeic acid in ddY mice.
    Yamada Y, Yasui H, Sakurai H.
    Photochem Photobiol; 2006 Sep 13; 82(6):1668-76. PubMed ID: 16836471
    [Abstract] [Full Text] [Related]

  • 70. [Lipid fluorophores of the crystalline lens in cataracts].
    Babizhaev MA, Mirimskiĭ AS, Linberg LF.
    Biofizika; 1986 Sep 13; 31(4):681-6. PubMed ID: 3756234
    [Abstract] [Full Text] [Related]

  • 71. [Study of soluble proteins of mouse crystalline lenses (normal and in cataract)].
    Shvedova AA, L'vov KM, Polianskiĭ NB, Bekmurzaev BM.
    Biull Eksp Biol Med; 1991 Jun 13; 111(6):609-10. PubMed ID: 1893184
    [Abstract] [Full Text] [Related]

  • 72. Singlet oxygen as a possible factor in human senile nuclear cataract development.
    Zigler JS, Goosey JD.
    Curr Eye Res; 1984 Jan 13; 3(1):59-65. PubMed ID: 6690229
    [Abstract] [Full Text] [Related]

  • 73. The effects of hyperbaric oxygen on the crystallins of cultured rabbit lenses: a possible catalytic role for copper.
    Padgaonkar VA, Leverenz VR, Fowler KE, Reddy VN, Giblin FJ.
    Exp Eye Res; 2000 Oct 13; 71(4):371-83. PubMed ID: 10995558
    [Abstract] [Full Text] [Related]

  • 74. Mitochondrial "movement" and lens optics following oxidative stress from UV-B irradiation: cultured bovine lenses and human retinal pigment epithelial cells (ARPE-19) as examples.
    Bantseev V, Youn HY.
    Ann N Y Acad Sci; 2006 Dec 13; 1091():17-33. PubMed ID: 17341599
    [Abstract] [Full Text] [Related]

  • 75. Cataract formation in a strain of rats selected for high oxidative stress.
    Marsili S, Salganik RI, Albright CD, Freel CD, Johnsen S, Peiffer RL, Costello MJ.
    Exp Eye Res; 2004 Nov 13; 79(5):595-612. PubMed ID: 15500819
    [Abstract] [Full Text] [Related]

  • 76.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 77. K2P--a novel cross-link from human lens protein.
    Cheng R, Feng Q, Argirov OK, Ortwerth BJ.
    Ann N Y Acad Sci; 2005 Jun 13; 1043():184-94. PubMed ID: 16037238
    [Abstract] [Full Text] [Related]

  • 78.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 79. Role of xanthurenic acid 8-O-beta-D-glucoside, a novel fluorophore that accumulates in the brunescent human eye lens.
    Thiagarajan G, Shirao E, Ando K, Inoue A, Balasubramanian D.
    Photochem Photobiol; 2002 Sep 13; 76(3):368-72. PubMed ID: 12403460
    [Abstract] [Full Text] [Related]

  • 80. Non-invasive monitoring of oxidative skin stress by ultraweak photon emission measurement. II: biological validation on ultraviolet A-stressed skin.
    Hagens R, Khabiri F, Schreiner V, Wenck H, Wittern KP, Duchstein HJ, Mei W.
    Skin Res Technol; 2008 Feb 13; 14(1):112-20. PubMed ID: 18211609
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.