These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Mitochondrial ATP synthase catalytic mechanism: a novel visual comparative structural approach emphasizes pivotal roles for Mg²⁺ and P-loop residues in making ATP. Blum DJ, Ko YH, Pedersen PL. Biochemistry; 2012 Feb 21; 51(7):1532-46. PubMed ID: 22243519 [Abstract] [Full Text] [Related]
5. The transition-like state and Pi entrance into the catalytic a subunit of the biological engine A-ATP synthase. Manimekalai MS, Kumar A, Jeyakanthan J, Grüber G. J Mol Biol; 2011 May 13; 408(4):736-54. PubMed ID: 21396943 [Abstract] [Full Text] [Related]
6. Catalytic site forms and controls in ATP synthase catalysis. Boyer PD. Biochim Biophys Acta; 2000 May 31; 1458(2-3):252-62. PubMed ID: 10838041 [Abstract] [Full Text] [Related]
7. ATP synthase: a tentative structural model. Engelbrecht S, Junge W. FEBS Lett; 1997 Sep 15; 414(3):485-91. PubMed ID: 9323021 [Abstract] [Full Text] [Related]
8. X-ray structure of the magnesium(II).ADP.vanadate complex of the Dictyostelium discoideum myosin motor domain to 1.9 A resolution. Smith CA, Rayment I. Biochemistry; 1996 Apr 30; 35(17):5404-17. PubMed ID: 8611530 [Abstract] [Full Text] [Related]
11. Crystallographic and enzymatic insights into the mechanisms of Mg-ADP inhibition in the A1 complex of the A1AO ATP synthase. Singh D, Grüber G. J Struct Biol; 2018 Jan 30; 201(1):26-35. PubMed ID: 29074108 [Abstract] [Full Text] [Related]