These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


243 related items for PubMed ID: 10508614

  • 1. Recurrent paralogy in the evolution of archaeal chaperonins.
    Archibald JM, Logsdon JM, Doolittle WF.
    Curr Biol; 1999 Sep 23; 9(18):1053-6. PubMed ID: 10508614
    [Abstract] [Full Text] [Related]

  • 2. Gene duplication and gene conversion shape the evolution of archaeal chaperonins.
    Archibald JM, Roger AJ.
    J Mol Biol; 2002 Mar 08; 316(5):1041-50. PubMed ID: 11884142
    [Abstract] [Full Text] [Related]

  • 3. Testing the neutral fixation of hetero-oligomerism in the archaeal chaperonin CCT.
    Ruano-Rubio V, Fares MA.
    Mol Biol Evol; 2007 Jun 08; 24(6):1384-96. PubMed ID: 17406022
    [Abstract] [Full Text] [Related]

  • 4. Stress genes and proteins in the archaea.
    Macario AJ, Lange M, Ahring BK, Conway de Macario E.
    Microbiol Mol Biol Rev; 1999 Dec 08; 63(4):923-67, table of contents. PubMed ID: 10585970
    [Abstract] [Full Text] [Related]

  • 5. The composition, structure and stability of a group II chaperonin are temperature regulated in a hyperthermophilic archaeon.
    Kagawa HK, Yaoi T, Brocchieri L, McMillan RA, Alton T, Trent JD.
    Mol Microbiol; 2003 Apr 08; 48(1):143-56. PubMed ID: 12657051
    [Abstract] [Full Text] [Related]

  • 6. The 60 kDa heat shock proteins in the hyperthermophilic archaeon Sulfolobus shibatae.
    Kagawa HK, Osipiuk J, Maltsev N, Overbeek R, Quaite-Randall E, Joachimiak A, Trent JD.
    J Mol Biol; 1995 Nov 10; 253(5):712-25. PubMed ID: 7473746
    [Abstract] [Full Text] [Related]

  • 7. Origin and evolution of eukaryotic chaperonins: phylogenetic evidence for ancient duplications in CCT genes.
    Archibald JM, Logsdon JM, Doolittle WF.
    Mol Biol Evol; 2000 Oct 10; 17(10):1456-66. PubMed ID: 11018153
    [Abstract] [Full Text] [Related]

  • 8. Gene duplication and the evolution of group II chaperonins: implications for structure and function.
    Archibald JM, Blouin C, Doolittle WF.
    J Struct Biol; 2001 Aug 10; 135(2):157-69. PubMed ID: 11580265
    [Abstract] [Full Text] [Related]

  • 9. [Expression and characterization of chaperonin from Sulfolobus solfataricus P2].
    Chu X, Wang L, He Y, Dong Z.
    Wei Sheng Wu Xue Bao; 2008 Oct 10; 48(10):1324-9. PubMed ID: 19160812
    [Abstract] [Full Text] [Related]

  • 10. Purification and molecular cloning of the group II chaperonin from the acidothermophilic archaeon, Sulfolobus sp. strain 7.
    Nakamura N, Taguchi H, Ishii N, Yoshida M, Suzuki M, Endo I, Miura K, Yohda M.
    Biochem Biophys Res Commun; 1997 Jul 30; 236(3):727-32. PubMed ID: 9245723
    [Abstract] [Full Text] [Related]

  • 11. A novel aminopeptidase associated with the 60 kDa chaperonin in the thermophilic archaeon Sulfolobus solfataricus.
    Condò I, Ruggero D, Reinhardt R, Londei P.
    Mol Microbiol; 1998 Aug 30; 29(3):775-85. PubMed ID: 9723917
    [Abstract] [Full Text] [Related]

  • 12. All three chaperonin genes in the archaeon Haloferax volcanii are individually dispensable.
    Kapatai G, Large A, Benesch JL, Robinson CV, Carrascosa JL, Valpuesta JM, Gowrinathan P, Lund PA.
    Mol Microbiol; 2006 Sep 30; 61(6):1583-97. PubMed ID: 16968228
    [Abstract] [Full Text] [Related]

  • 13. Structural analysis of the Sulfolobus solfataricus TF55β chaperonin by cryo-electron microscopy.
    Zeng YC, Sobti M, Stewart AG.
    Acta Crystallogr F Struct Biol Commun; 2021 Mar 01; 77(Pt 3):79-84. PubMed ID: 33682792
    [Abstract] [Full Text] [Related]

  • 14. Functional diversity in archaeal Hsp60: a molecular mosaic of Group I and Group II chaperonin.
    Bhakta K, Roy M, Samanta S, Ghosh A.
    FEBS J; 2024 Oct 01; 291(19):4323-4348. PubMed ID: 38923213
    [Abstract] [Full Text] [Related]

  • 15. Evolution of assisted protein folding: the distribution of the main chaperoning systems within the phylogenetic domain archaea.
    Macario AJ, Malz M, Conway de Macario E.
    Front Biosci; 2004 May 01; 9():1318-32. PubMed ID: 14977547
    [Abstract] [Full Text] [Related]

  • 16. Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea.
    Koonin EV, Mushegian AR, Galperin MY, Walker DR.
    Mol Microbiol; 1997 Aug 01; 25(4):619-37. PubMed ID: 9379893
    [Abstract] [Full Text] [Related]

  • 17. The structure and evolution of the ribosomal proteins encoded in the spc operon of the archaeon (Crenarchaeota) Sulfolobus acidocaldarius.
    Yang D, Kusser I, Köpke AK, Koop BF, Matheson AT.
    Mol Phylogenet Evol; 1999 Jul 01; 12(2):177-85. PubMed ID: 10381320
    [Abstract] [Full Text] [Related]

  • 18. The chaperonin of the archaeon Sulfolobus solfataricus is an RNA-binding protein that participates in ribosomal RNA processing.
    Ruggero D, Ciammaruconi A, Londei P.
    EMBO J; 1998 Jun 15; 17(12):3471-7. PubMed ID: 9628882
    [Abstract] [Full Text] [Related]

  • 19. Introns in protein-coding genes in Archaea.
    Watanabe Y, Yokobori S, Inaba T, Yamagishi A, Oshima T, Kawarabayasi Y, Kikuchi H, Kita K.
    FEBS Lett; 2002 Jan 02; 510(1-2):27-30. PubMed ID: 11755525
    [Abstract] [Full Text] [Related]

  • 20. Novel chaperonins in a prokaryote.
    Maeder DL, Macario AJ, Conway de Macario E.
    J Mol Evol; 2005 Mar 02; 60(3):409-16. PubMed ID: 15871051
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.