These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Structural basis for Clostridium perfringens enterotoxin targeting of claudins at tight junctions in mammalian gut. Vecchio AJ, Rathnayake SS, Stroud RM. Proc Natl Acad Sci U S A; 2021 Apr 13; 118(15):. PubMed ID: 33876770 [Abstract] [Full Text] [Related]
3. Role of C-terminal regions of the C-terminal fragment of Clostridium perfringens enterotoxin in its interaction with claudin-4. Takahashi A, Kondoh M, Masuyama A, Fujii M, Mizuguchi H, Horiguchi Y, Watanabe Y. J Control Release; 2005 Nov 02; 108(1):56-62. PubMed ID: 16091298 [Abstract] [Full Text] [Related]
4. Manner of interaction of heterogeneous claudin species within and between tight junction strands. Furuse M, Sasaki H, Tsukita S. J Cell Biol; 1999 Nov 15; 147(4):891-903. PubMed ID: 10562289 [Abstract] [Full Text] [Related]
7. Claudin-4 overexpression in epithelial ovarian cancer is associated with hypomethylation and is a potential target for modulation of tight junction barrier function using a C-terminal fragment of Clostridium perfringens enterotoxin. Litkouhi B, Kwong J, Lo CM, Smedley JG, McClane BA, Aponte M, Gao Z, Sarno JL, Hinners J, Welch WR, Berkowitz RS, Mok SC, Garner EI. Neoplasia; 2007 Apr 15; 9(4):304-14. PubMed ID: 17460774 [Abstract] [Full Text] [Related]
8. Tight junctions. Structural insight into tight junction disassembly by Clostridium perfringens enterotoxin. Saitoh Y, Suzuki H, Tani K, Nishikawa K, Irie K, Ogura Y, Tamura A, Tsukita S, Fujiyoshi Y. Science; 2015 Feb 13; 347(6223):775-8. PubMed ID: 25678664 [Abstract] [Full Text] [Related]
9. Cytotoxicity of Clostridium perfringens enterotoxin depends on the conditions of claudin-4 in ovarian carcinoma cells. Tanaka S, Aoyama T, Ogawa M, Takasawa A, Murata M, Osanai M, Saito T, Sawada N. Exp Cell Res; 2018 Oct 01; 371(1):278-286. PubMed ID: 30142326 [Abstract] [Full Text] [Related]
10. Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells. Furuse M, Furuse K, Sasaki H, Tsukita S. J Cell Biol; 2001 Apr 16; 153(2):263-72. PubMed ID: 11309408 [Abstract] [Full Text] [Related]
14. Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. Itoh M, Furuse M, Morita K, Kubota K, Saitou M, Tsukita S. J Cell Biol; 1999 Dec 13; 147(6):1351-63. PubMed ID: 10601346 [Abstract] [Full Text] [Related]
15. Polar and charged extracellular residues conserved among barrier-forming claudins contribute to tight junction strand formation. Piontek A, Rossa J, Protze J, Wolburg H, Hempel C, Günzel D, Krause G, Piontek J. Ann N Y Acad Sci; 2017 Jun 13; 1397(1):143-156. PubMed ID: 28415153 [Abstract] [Full Text] [Related]
18. Tissue distribution and safety evaluation of a claudin-targeting molecule, the C-terminal fragment of Clostridium perfringens enterotoxin. Li X, Saeki R, Watari A, Yagi K, Kondoh M. Eur J Pharm Sci; 2014 Feb 14; 52():132-7. PubMed ID: 24231339 [Abstract] [Full Text] [Related]
19. A toxicological evaluation of a claudin modulator, the C-terminal fragment of Clostridium perfringens enterotoxin, in mice. Suzuki H, Kondoh M, Li X, Takahashi A, Matsuhisa K, Matsushita K, Kakamu Y, Yamane S, Kodaka M, Isoda K, Yagi K. Pharmazie; 2011 Jul 14; 66(7):543-6. PubMed ID: 21812332 [Abstract] [Full Text] [Related]
20. Identification of claudin-4 binder that attenuates tight junction barrier function by TR-FRET-based screening assay. Watari A, Kodaka M, Matsuhisa K, Sakamoto Y, Hisaie K, Kawashita N, Takagi T, Yamagishi Y, Suzuki H, Tsujino H, Yagi K, Kondoh M. Sci Rep; 2017 Nov 06; 7(1):14514. PubMed ID: 29109448 [Abstract] [Full Text] [Related] Page: [Next] [New Search]