These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
342 related items for PubMed ID: 10512706
1. Structural analysis of a non-contiguous second-site revertant in T4 lysozyme shows that increasing the rigidity of a protein can enhance its stability. Wray JW, Baase WA, Lindstrom JD, Weaver LH, Poteete AR, Matthews BW. J Mol Biol; 1999 Oct 08; 292(5):1111-20. PubMed ID: 10512706 [Abstract] [Full Text] [Related]
2. Similar hydrophobic replacements of Leu99 and Phe153 within the core of T4 lysozyme have different structural and thermodynamic consequences. Eriksson AE, Baase WA, Matthews BW. J Mol Biol; 1993 Feb 05; 229(3):747-69. PubMed ID: 8433369 [Abstract] [Full Text] [Related]
3. Alanine scanning mutagenesis of the alpha-helix 115-123 of phage T4 lysozyme: effects on structure, stability and the binding of solvent. Blaber M, Baase WA, Gassner N, Matthews BW. J Mol Biol; 1995 Feb 17; 246(2):317-30. PubMed ID: 7869383 [Abstract] [Full Text] [Related]
4. The introduction of strain and its effects on the structure and stability of T4 lysozyme. Liu R, Baase WA, Matthews BW. J Mol Biol; 2000 Jan 07; 295(1):127-45. PubMed ID: 10623513 [Abstract] [Full Text] [Related]
5. Thermodynamic and structural compensation in "size-switch" core repacking variants of bacteriophage T4 lysozyme. Baldwin E, Xu J, Hajiseyedjavadi O, Baase WA, Matthews BW. J Mol Biol; 1996 Jun 14; 259(3):542-59. PubMed ID: 8676387 [Abstract] [Full Text] [Related]
6. Size versus polarizability in protein-ligand interactions: binding of noble gases within engineered cavities in phage T4 lysozyme. Quillin ML, Breyer WA, Griswold IJ, Matthews BW. J Mol Biol; 2000 Sep 29; 302(4):955-77. PubMed ID: 10993735 [Abstract] [Full Text] [Related]
7. Use of stabilizing mutations to engineer a charged group within a ligand-binding hydrophobic cavity in T4 lysozyme. Liu L, Baase WA, Michael MM, Matthews BW. Biochemistry; 2009 Sep 22; 48(37):8842-51. PubMed ID: 19663503 [Abstract] [Full Text] [Related]
8. Relocation or duplication of the helix A sequence of T4 lysozyme causes only modest changes in structure but can increase or decrease the rate of folding. Sagermann M, Baase WA, Mooers BH, Gay L, Matthews BW. Biochemistry; 2004 Feb 10; 43(5):1296-301. PubMed ID: 14756565 [Abstract] [Full Text] [Related]
9. Substitution with selenomethionine can enhance the stability of methionine-rich proteins. Gassner NC, Baase WA, Hausrath AC, Matthews BW. J Mol Biol; 1999 Nov 19; 294(1):17-20. PubMed ID: 10556025 [Abstract] [Full Text] [Related]
10. Determination of alpha-helix propensity within the context of a folded protein. Sites 44 and 131 in bacteriophage T4 lysozyme. Blaber M, Zhang XJ, Lindstrom JD, Pepiot SD, Baase WA, Matthews BW. J Mol Biol; 1994 Jan 14; 235(2):600-24. PubMed ID: 8289284 [Abstract] [Full Text] [Related]
11. Accommodation of amino acid insertions in an alpha-helix of T4 lysozyme. Structural and thermodynamic analysis. Heinz DW, Baase WA, Zhang XJ, Blaber M, Dahlquist FW, Matthews BW. J Mol Biol; 1994 Feb 25; 236(3):869-86. PubMed ID: 8114100 [Abstract] [Full Text] [Related]
12. Control of bacteriophage T4 tail lysozyme activity during the infection process. Kanamaru S, Ishiwata Y, Suzuki T, Rossmann MG, Arisaka F. J Mol Biol; 2005 Mar 04; 346(4):1013-20. PubMed ID: 15701513 [Abstract] [Full Text] [Related]
13. A mutant T4 lysozyme (Val 131----Ala) designed to increase thermostability by the reduction of strain within an alpha-helix. Dao-Pin S, Baase WA, Matthews BW. Proteins; 1990 Mar 04; 7(2):198-204. PubMed ID: 2326253 [Abstract] [Full Text] [Related]
14. Structural and thermodynamic characterization of T4 lysozyme mutants and the contribution of internal cavities to pressure denaturation. Ando N, Barstow B, Baase WA, Fields A, Matthews BW, Gruner SM. Biochemistry; 2008 Oct 21; 47(42):11097-109. PubMed ID: 18816066 [Abstract] [Full Text] [Related]
15. Motion of spin-labeled side chains in T4 lysozyme. Correlation with protein structure and dynamics. Mchaourab HS, Lietzow MA, Hideg K, Hubbell WL. Biochemistry; 1996 Jun 18; 35(24):7692-704. PubMed ID: 8672470 [Abstract] [Full Text] [Related]
16. Modeling protein-small molecule interactions: structure and thermodynamics of noble gases binding in a cavity in mutant phage T4 lysozyme L99A. Mann G, Hermans J. J Mol Biol; 2000 Sep 29; 302(4):979-89. PubMed ID: 10993736 [Abstract] [Full Text] [Related]
17. Protein flexibility and adaptability seen in 25 crystal forms of T4 lysozyme. Zhang XJ, Wozniak JA, Matthews BW. J Mol Biol; 1995 Jul 21; 250(4):527-52. PubMed ID: 7616572 [Abstract] [Full Text] [Related]
18. Studying excited states of proteins by NMR spectroscopy. Mulder FA, Mittermaier A, Hon B, Dahlquist FW, Kay LE. Nat Struct Biol; 2001 Nov 21; 8(11):932-5. PubMed ID: 11685237 [Abstract] [Full Text] [Related]
19. Relative importance of secondary structure and solvent accessibility to the stability of protein mutants. A case study with amino acid properties and energetics on T4 and human lysozymes. Saraboji K, Gromiha MM, Ponnuswamy MN. Comput Biol Chem; 2005 Feb 21; 29(1):25-35. PubMed ID: 15680583 [Abstract] [Full Text] [Related]