These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
143 related items for PubMed ID: 10514446
1. Peroxynitrite inactivates tryptophan hydroxylase via sulfhydryl oxidation. Coincident nitration of enzyme tyrosyl residues has minimal impact on catalytic activity. Kuhn DM, Geddes TJ. J Biol Chem; 1999 Oct 15; 274(42):29726-32. PubMed ID: 10514446 [Abstract] [Full Text] [Related]
2. Peroxynitrite inactivation of tyrosine hydroxylase: mediation by sulfhydryl oxidation, not tyrosine nitration. Kuhn DM, Aretha CW, Geddes TJ. J Neurosci; 1999 Dec 01; 19(23):10289-94. PubMed ID: 10575026 [Abstract] [Full Text] [Related]
3. Glyceraldehyde-3-phosphate dehydrogenase inactivation by peroxynitrite. Souza JM, Radi R. Arch Biochem Biophys; 1998 Dec 15; 360(2):187-94. PubMed ID: 9851830 [Abstract] [Full Text] [Related]
7. Inactivation of tryptophan hydroxylase by nitric oxide: enhancement by tetrahydrobiopterin. Kuhn DM, Arthur RE. J Neurochem; 1997 Apr 15; 68(4):1495-502. PubMed ID: 9084419 [Abstract] [Full Text] [Related]
8. Peroxynitrite-mediated inactivation of manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues. MacMillan-Crow LA, Crow JP, Thompson JA. Biochemistry; 1998 Feb 10; 37(6):1613-22. PubMed ID: 9484232 [Abstract] [Full Text] [Related]
9. Activation of microsomal glutathione s-transferase by peroxynitrite. Ji Y, Bennett BM. Mol Pharmacol; 2003 Jan 10; 63(1):136-46. PubMed ID: 12488546 [Abstract] [Full Text] [Related]
10. The effect of neighboring methionine residue on tyrosine nitration and oxidation in peptides treated with MPO, H2O2, and NO2(-) or peroxynitrite and bicarbonate: role of intramolecular electron transfer mechanism? Zhang H, Zielonka J, Sikora A, Joseph J, Xu Y, Kalyanaraman B. Arch Biochem Biophys; 2009 Apr 15; 484(2):134-45. PubMed ID: 19056332 [Abstract] [Full Text] [Related]
11. Nitration and inactivation of tyrosine hydroxylase by peroxynitrite. Blanchard-Fillion B, Souza JM, Friel T, Jiang GC, Vrana K, Sharov V, Barrón L, Schöneich C, Quijano C, Alvarez B, Radi R, Przedborski S, Fernando GS, Horwitz J, Ischiropoulos H. J Biol Chem; 2001 Dec 07; 276(49):46017-23. PubMed ID: 11590168 [Abstract] [Full Text] [Related]
12. Structural and molecular basis of the peroxynitrite-mediated nitration and inactivation of Trypanosoma cruzi iron-superoxide dismutases (Fe-SODs) A and B: disparate susceptibilities due to the repair of Tyr35 radical by Cys83 in Fe-SODB through intramolecular electron transfer. Martinez A, Peluffo G, Petruk AA, Hugo M, Piñeyro D, Demicheli V, Moreno DM, Lima A, Batthyány C, Durán R, Robello C, Martí MA, Larrieux N, Buschiazzo A, Trujillo M, Radi R, Piacenza L. J Biol Chem; 2014 May 02; 289(18):12760-78. PubMed ID: 24616096 [Abstract] [Full Text] [Related]
13. Peroxynitrite-induced nitration of tyrosine hydroxylase: identification of tyrosines 423, 428, and 432 as sites of modification by matrix-assisted laser desorption ionization time-of-flight mass spectrometry and tyrosine-scanning mutagenesis. Kuhn DM, Sadidi M, Liu X, Kreipke C, Geddes T, Borges C, Watson JT. J Biol Chem; 2002 Apr 19; 277(16):14336-42. PubMed ID: 11834745 [Abstract] [Full Text] [Related]
14. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. Radi R, Beckman JS, Bush KM, Freeman BA. J Biol Chem; 1991 Mar 05; 266(7):4244-50. PubMed ID: 1847917 [Abstract] [Full Text] [Related]
15. Molecular mechanism of the inactivation of tryptophan hydroxylase by nitric oxide: attack on critical sulfhydryls that spare the enzyme iron center. Kuhn DM, Arthur R. J Neurosci; 1997 Oct 01; 17(19):7245-51. PubMed ID: 9295371 [Abstract] [Full Text] [Related]
16. Pathways of peroxynitrite oxidation of thiol groups. Quijano C, Alvarez B, Gatti RM, Augusto O, Radi R. Biochem J; 1997 Feb 15; 322 ( Pt 1)(Pt 1):167-73. PubMed ID: 9078258 [Abstract] [Full Text] [Related]
17. Tryptophan hydroxylase. The role of oxygen, iron, and sulfhydryl groups as determinants of stability and catalytic activity. Kuhn DM, Ruskin B, Lovenberg W. J Biol Chem; 1980 May 10; 255(9):4137-43. PubMed ID: 7372670 [Abstract] [Full Text] [Related]
18. Dopamine-melanin protects against tyrosine nitration, tryptophan oxidation and Ca(2+)-ATPase inactivation induced by peroxynitrite. Stepień K, Zajdel A, Wilczok A, Wilczok T, Grzelak A, Mateja A, Soszyński M, Bartosz G. Biochim Biophys Acta; 2000 Oct 18; 1523(2-3):189-95. PubMed ID: 11042383 [Abstract] [Full Text] [Related]
19. Kinetics of superoxide dismutase- and iron-catalyzed nitration of phenolics by peroxynitrite. Beckman JS, Ischiropoulos H, Zhu L, van der Woerd M, Smith C, Chen J, Harrison J, Martin JC, Tsai M. Arch Biochem Biophys; 1992 Nov 01; 298(2):438-45. PubMed ID: 1416975 [Abstract] [Full Text] [Related]
20. Dopamine inactivates tryptophan hydroxylase and forms a redox-cycling quinoprotein: possible endogenous toxin to serotonin neurons. Kuhn DM, Arthur R. J Neurosci; 1998 Sep 15; 18(18):7111-7. PubMed ID: 9736634 [Abstract] [Full Text] [Related] Page: [Next] [New Search]