These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


298 related items for PubMed ID: 10516264

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Effects of TA-3090, a new calcium channel blocker, on myocardial substrate utilization in ischemic and nonischemic isolated working fatty acid-perfused rat hearts.
    Davies NJ, McVeigh JJ, Lopaschuk GD.
    Circ Res; 1991 Mar; 68(3):807-17. PubMed ID: 1742868
    [Abstract] [Full Text] [Related]

  • 3. Adenosine modification of energy substrate use in isolated hearts perfused with fatty acids.
    Finegan BA, Clanachan AS, Coulson CS, Lopaschuk GD.
    Am J Physiol; 1992 May; 262(5 Pt 2):H1501-7. PubMed ID: 1590454
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Changes in substrate metabolism in isolated mouse hearts following ischemia-reperfusion.
    Aasum E, Hafstad AD, Larsen TS.
    Mol Cell Biochem; 2003 Jul; 249(1-2):97-103. PubMed ID: 12956404
    [Abstract] [Full Text] [Related]

  • 6. Calcium regulation of glycolysis, glucose oxidation, and fatty acid oxidation in the aerobic and ischemic heart.
    Schönekess BO, Brindley PG, Lopaschuk GD.
    Can J Physiol Pharmacol; 1995 Nov; 73(11):1632-40. PubMed ID: 8789418
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Impaired cardiac efficiency and increased fatty acid oxidation in insulin-resistant ob/ob mouse hearts.
    Mazumder PK, O'Neill BT, Roberts MW, Buchanan J, Yun UJ, Cooksey RC, Boudina S, Abel ED.
    Diabetes; 2004 Sep; 53(9):2366-74. PubMed ID: 15331547
    [Abstract] [Full Text] [Related]

  • 10. The contribution of glycolysis, glucose oxidation, lactate oxidation, and fatty acid oxidation to ATP production in isolated biventricular working hearts from 2-week-old rabbits.
    Itoi T, Lopaschuk GD.
    Pediatr Res; 1993 Dec; 34(6):735-41. PubMed ID: 8108185
    [Abstract] [Full Text] [Related]

  • 11. Myocardial triglyceride turnover and contribution to energy substrate utilization in isolated working rat hearts.
    Saddik M, Lopaschuk GD.
    J Biol Chem; 1991 May 05; 266(13):8162-70. PubMed ID: 1902472
    [Abstract] [Full Text] [Related]

  • 12. High rates of residual fatty acid oxidation during mild ischemia decrease cardiac work and efficiency.
    Folmes CD, Sowah D, Clanachan AS, Lopaschuk GD.
    J Mol Cell Cardiol; 2009 Jul 05; 47(1):142-8. PubMed ID: 19303418
    [Abstract] [Full Text] [Related]

  • 13. Impact of lactate in the perfusate on function and metabolic parameters of isolated working rat heart.
    Onay-Besikci A.
    Mol Cell Biochem; 2007 Feb 05; 296(1-2):121-7. PubMed ID: 16955225
    [Abstract] [Full Text] [Related]

  • 14. L-carnitine improvement of cardiac function is associated with a stimulation in glucose but not fatty acid metabolism in carnitine-deficient hearts.
    Broderick TL, Panagakis G, DiDomenico D, Gamble J, Lopaschuk GD, Shug AL, Paulson DJ.
    Cardiovasc Res; 1995 Nov 05; 30(5):815-20. PubMed ID: 8595631
    [Abstract] [Full Text] [Related]

  • 15. Fatty acid translocase/CD36 deficiency does not energetically or functionally compromise hearts before or after ischemia.
    Kuang M, Febbraio M, Wagg C, Lopaschuk GD, Dyck JR.
    Circulation; 2004 Mar 30; 109(12):1550-7. PubMed ID: 15023869
    [Abstract] [Full Text] [Related]

  • 16. Epinephrine increases ATP production in hearts by preferentially increasing glucose metabolism.
    Collins-Nakai RL, Noseworthy D, Lopaschuk GD.
    Am J Physiol; 1994 Nov 30; 267(5 Pt 2):H1862-71. PubMed ID: 7977816
    [Abstract] [Full Text] [Related]

  • 17. Protein lysine acetylation does not contribute to the high rates of fatty acid oxidation seen in the post-ischemic heart.
    Ketema EB, Ahsan M, Zhang L, Karwi QG, Lopaschuk GD.
    Sci Rep; 2024 Jan 12; 14(1):1193. PubMed ID: 38216627
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Metabolic profiling of hearts exposed to sevoflurane and propofol reveals distinct regulation of fatty acid and glucose oxidation: CD36 and pyruvate dehydrogenase as key regulators in anesthetic-induced fuel shift.
    Wang L, Ko KW, Lucchinetti E, Zhang L, Troxler H, Hersberger M, Omar MA, Posse de Chaves EI, Lopaschuk GD, Clanachan AS, Zaugg M.
    Anesthesiology; 2010 Sep 12; 113(3):541-51. PubMed ID: 20683255
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.