These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


164 related items for PubMed ID: 10534735

  • 1. Latency of Epstein-Barr virus is stabilized by antisense-mediated control of the viral immediate-early gene BZLF-1.
    Prang N, Wolf H, Schwarzmann F.
    J Med Virol; 1999 Dec; 59(4):512-9. PubMed ID: 10534735
    [Abstract] [Full Text] [Related]

  • 2. Epstein-Barr virus replicative gene transcription during de novo infection of human thymocytes: simultaneous early expression of BZLF-1 and its repressor RAZ.
    Kelleher CA, Paterson RK, Dreyfus DH, Streib JE, Xu JW, Takase K, Jones JF, Gelfand EW.
    Virology; 1995 Apr 20; 208(2):685-95. PubMed ID: 7747440
    [Abstract] [Full Text] [Related]

  • 3. Interferon regulatory factor 7 is negatively regulated by the Epstein-Barr virus immediate-early gene, BZLF-1.
    Hahn AM, Huye LE, Ning S, Webster-Cyriaque J, Pagano JS.
    J Virol; 2005 Aug 20; 79(15):10040-52. PubMed ID: 16014964
    [Abstract] [Full Text] [Related]

  • 4. A Genome-Wide Epstein-Barr Virus Polyadenylation Map and Its Antisense RNA to EBNA.
    Majerciak V, Yang W, Zheng J, Zhu J, Zheng ZM.
    J Virol; 2019 Jan 15; 93(2):. PubMed ID: 30355690
    [Abstract] [Full Text] [Related]

  • 5. The BHLF1 Locus of Epstein-Barr Virus Contributes to Viral Latency and B-Cell Immortalization.
    Yetming KD, Lupey-Green LN, Biryukov S, Hughes DJ, Marendy EM, Miranda JL, Sample JT.
    J Virol; 2020 Aug 17; 94(17):. PubMed ID: 32581094
    [Abstract] [Full Text] [Related]

  • 6. Latency pattern of Epstein-Barr virus and methylation status in Epstein-Barr virus-associated hemophagocytic syndrome.
    Yoshioka M, Kikuta H, Ishiguro N, Endo R, Kobayashi K.
    J Med Virol; 2003 Jul 17; 70(3):410-9. PubMed ID: 12767005
    [Abstract] [Full Text] [Related]

  • 7. The latency pattern of Epstein-Barr virus infection and viral IL-10 expression in cutaneous natural killer/T-cell lymphomas.
    Xu ZG, Iwatsuki K, Oyama N, Ohtsuka M, Satoh M, Kikuchi S, Akiba H, Kaneko F.
    Br J Cancer; 2001 Apr 06; 84(7):920-5. PubMed ID: 11286472
    [Abstract] [Full Text] [Related]

  • 8. The lytic transition of Epstein-Barr virus is imitated by recombinant B-cells.
    Marschall M, Alliger P, Schwarzmann F, Bogedain C, Brand M, Reichelt B, Glaser G, Wolf H.
    Arch Virol; 1993 Apr 06; 129(1-4):23-33. PubMed ID: 8385916
    [Abstract] [Full Text] [Related]

  • 9. Nasal NK- and T-cell lymphomas share the same type of Epstein-Barr virus latency as nasopharyngeal carcinoma and Hodgkin's disease.
    Chiang AK, Tao Q, Srivastava G, Ho FC.
    Int J Cancer; 1996 Nov 04; 68(3):285-90. PubMed ID: 8903467
    [Abstract] [Full Text] [Related]

  • 10. Epstein-Barr virus lytic replication is controlled by posttranscriptional negative regulation of BZLF1.
    Prang N, Wolf H, Schwarzmann F.
    J Virol; 1995 Apr 04; 69(4):2644-8. PubMed ID: 7884918
    [Abstract] [Full Text] [Related]

  • 11. Human p32: a coactivator for Epstein-Barr virus nuclear antigen-1-mediated transcriptional activation and possible role in viral latent cycle DNA replication.
    Van Scoy S, Watakabe I, Krainer AR, Hearing J.
    Virology; 2000 Sep 15; 275(1):145-57. PubMed ID: 11017796
    [Abstract] [Full Text] [Related]

  • 12. The SWI/SNF Chromatin Regulator BRG1 Modulates the Transcriptional Regulatory Activity of the Epstein-Barr Virus DNA Polymerase Processivity Factor BMRF1.
    Su MT, Wang YT, Chen YJ, Lin SF, Tsai CH, Chen MR.
    J Virol; 2017 May 01; 91(9):. PubMed ID: 28228591
    [Abstract] [Full Text] [Related]

  • 13. Unique Epstein-Barr virus (EBV) latent gene expression, EBNA promoter usage and EBNA promoter methylation status in chronic active EBV infection.
    Yoshioka M, Kikuta H, Ishiguro N, Ma X, Kobayashi K.
    J Gen Virol; 2003 May 01; 84(Pt 5):1133-1140. PubMed ID: 12692278
    [Abstract] [Full Text] [Related]

  • 14. Interferon-γ-inducible protein 16 (IFI16) is required for the maintenance of Epstein-Barr virus latency.
    Pisano G, Roy A, Ahmed Ansari M, Kumar B, Chikoti L, Chandran B.
    Virol J; 2017 Nov 13; 14(1):221. PubMed ID: 29132393
    [Abstract] [Full Text] [Related]

  • 15. Latent and lytic Epstein-Barr virus replication strategies.
    Tsurumi T, Fujita M, Kudoh A.
    Rev Med Virol; 2005 Nov 13; 15(1):3-15. PubMed ID: 15386591
    [Abstract] [Full Text] [Related]

  • 16. Protein kinase C-independent activation of the Epstein-Barr virus lytic cycle.
    Gradoville L, Kwa D, El-Guindy A, Miller G.
    J Virol; 2002 Jun 13; 76(11):5612-26. PubMed ID: 11991990
    [Abstract] [Full Text] [Related]

  • 17. BZLF1 controlled by family repeat domain induces lytic cytotoxicity in Epstein-Barr virus-positive tumor cells.
    Wang H, Zhao Y, Zeng L, Tang M, El-Deeb A, Li JJ, Cao Y.
    Anticancer Res; 2004 Jun 13; 24(1):67-74. PubMed ID: 15015577
    [Abstract] [Full Text] [Related]

  • 18. Expression of Epstein-Barr virus BamHI-A rightward transcripts in latently infected B cells from peripheral blood.
    Chen H, Smith P, Ambinder RF, Hayward SD.
    Blood; 1999 May 01; 93(9):3026-32. PubMed ID: 10216099
    [Abstract] [Full Text] [Related]

  • 19. Rta of murine gammaherpesvirus 68 reactivates the complete lytic cycle from latency.
    Wu TT, Usherwood EJ, Stewart JP, Nash AA, Sun R.
    J Virol; 2000 Apr 01; 74(8):3659-67. PubMed ID: 10729142
    [Abstract] [Full Text] [Related]

  • 20. Epstein-Barr virus BZLF1 gene, a switch from latency to lytic infection, is expressed as an immediate-early gene after primary infection of B lymphocytes.
    Wen W, Iwakiri D, Yamamoto K, Maruo S, Kanda T, Takada K.
    J Virol; 2007 Jan 01; 81(2):1037-42. PubMed ID: 17079287
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.