These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


244 related items for PubMed ID: 10545444

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae.
    O'Rourke SM, Herskowitz I.
    Genes Dev; 1998 Sep 15; 12(18):2874-86. PubMed ID: 9744864
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Response to high osmotic conditions and elevated temperature in Saccharomyces cerevisiae is controlled by intracellular glycerol and involves coordinate activity of MAP kinase pathways.
    Wojda I, Alonso-Monge R, Bebelman JP, Mager WH, Siderius M.
    Microbiology (Reading); 2003 May 15; 149(Pt 5):1193-1204. PubMed ID: 12724381
    [Abstract] [Full Text] [Related]

  • 6. A docking site determining specificity of Pbs2 MAPKK for Ssk2/Ssk22 MAPKKKs in the yeast HOG pathway.
    Tatebayashi K, Takekawa M, Saito H.
    EMBO J; 2003 Jul 15; 22(14):3624-34. PubMed ID: 12853477
    [Abstract] [Full Text] [Related]

  • 7. Two activating phosphorylation sites of Pbs2 MAP2K in the yeast HOG pathway are differentially dephosphorylated by four PP2C phosphatases Ptc1-Ptc4.
    Tatebayashi K, Saito H.
    J Biol Chem; 2023 Apr 15; 299(4):104569. PubMed ID: 36870684
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. [Mechanism of HOG-MAPK pathway in regulating mycotoxins formation under environmental stresses].
    Ma Y, Li M, Wang Z, Liao L, Zheng Y, Liu Y.
    Sheng Wu Gong Cheng Xue Bao; 2022 Jul 25; 38(7):2433-2446. PubMed ID: 35871615
    [Abstract] [Full Text] [Related]

  • 11. Hyperosmotic stress response and regulation of cell wall integrity in Saccharomyces cerevisiae share common functional aspects.
    Alonso-Monge R, Real E, Wojda I, Bebelman JP, Mager WH, Siderius M.
    Mol Microbiol; 2001 Aug 25; 41(3):717-30. PubMed ID: 11532139
    [Abstract] [Full Text] [Related]

  • 12. The high osmotic response and cell wall integrity pathways cooperate to regulate transcriptional responses to zymolyase-induced cell wall stress in Saccharomyces cerevisiae.
    García R, Rodríguez-Peña JM, Bermejo C, Nombela C, Arroyo J.
    J Biol Chem; 2009 Apr 17; 284(16):10901-11. PubMed ID: 19234305
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Loss of function of Hog1 improves glycerol assimilation in Saccharomyces cerevisiae.
    Sone M, Navanopparatsakul K, Takahashi S, Furusawa C, Hirasawa T.
    World J Microbiol Biotechnol; 2023 Jul 21; 39(10):255. PubMed ID: 37474876
    [Abstract] [Full Text] [Related]

  • 15. Vacuolar H+-ATPase works in parallel with the HOG pathway to adapt Saccharomyces cerevisiae cells to osmotic stress.
    Li SC, Diakov TT, Rizzo JM, Kane PM.
    Eukaryot Cell; 2012 Mar 21; 11(3):282-91. PubMed ID: 22210831
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Kinase activity-dependent nuclear export opposes stress-induced nuclear accumulation and retention of Hog1 mitogen-activated protein kinase in the budding yeast Saccharomyces cerevisiae.
    Reiser V, Ruis H, Ammerer G.
    Mol Biol Cell; 1999 Apr 21; 10(4):1147-61. PubMed ID: 10198063
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.