These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
180 related items for PubMed ID: 10546826
1. Effects of organic modifiers on solute retention and electrokinetic migrations in micellar electrokinetic capillary chromatography. Liu Z, Zou H, Ye M, Ni J, Zhang Y. Electrophoresis; 1999 Oct; 20(14):2898-908. PubMed ID: 10546826 [Abstract] [Full Text] [Related]
2. Explorations of alkyl polyols as "class I" organic modifiers to adjust selectivity in micellar electrokinetic capillary chromatography. Wall WE, Allen DJ, Denson KD, Love GI, Smith JT. Electrophoresis; 1999 Sep; 20(12):2390-9. PubMed ID: 10499330 [Abstract] [Full Text] [Related]
3. Adjusting selectivity in micellar electrokinetic capillary chromatography with 1,2-hexanediol. Allen DJ, Wall WE, Denson KD, Smith JT. Electrophoresis; 1999 Jan; 20(1):100-10. PubMed ID: 10065965 [Abstract] [Full Text] [Related]
4. Effect of class I and II organic modifiers on retention and selectivity in vesicle electrokinetic chromatography. Pascoe R, Foley JP. Electrophoresis; 2002 Jun; 23(11):1618-27. PubMed ID: 12179980 [Abstract] [Full Text] [Related]
5. Characterization of the SDS-induced electroosmotic flow in micellar electrokinetic chromatography with cationic polyelectrolyte-coated capillaries. Pranaityte B, Padarauskas A. Electrophoresis; 2006 May; 27(10):1915-21. PubMed ID: 16596708 [Abstract] [Full Text] [Related]
6. Effects of organic modifiers on retention mechanism and selectivity in micellar electrokinetic capillary chromatography studied by linear solvation energy relationships. Liu Z, Zou H, Ye M, Ni J, Zhang Y. J Chromatogr A; 1999 Nov 19; 863(1):69-79. PubMed ID: 10591465 [Abstract] [Full Text] [Related]
7. Optimization of the separation of flavonoids using solvent-modified micellar electrokinetic chromatography. Tonin FG, Jager AV, Micke GA, Farah JP, Tavares MF. Electrophoresis; 2005 Sep 19; 26(17):3387-96. PubMed ID: 16143970 [Abstract] [Full Text] [Related]
8. Solute-solvent interactions in micellar electrokinetic chromatography: IV. Characterization of electroosmotic flow and micellar markers. Fuguet E, Ràfols C, Bosch E, Rosés M. Electrophoresis; 2002 Jan 19; 23(1):56-66. PubMed ID: 11824622 [Abstract] [Full Text] [Related]
9. Effect of organic modifier concentrations on electrokinetic migrations in micellar electrokinetic chromatography. Chen N, Terabe S, Nakagawa T. Electrophoresis; 1995 Aug 19; 16(8):1457-62. PubMed ID: 8529614 [Abstract] [Full Text] [Related]
10. Retention factor and retention index of homologous series compounds in microemulsion electrokinetic chromatography employing suppressed electroosmosis. Poouthree K, Leepipatpiboon N, Petsom A, Nhujak T. Electrophoresis; 2007 Mar 19; 28(5):767-78. PubMed ID: 17265537 [Abstract] [Full Text] [Related]
11. Characterization of surfactant and phospholipid vesicles for use as pseudostationary phases in electrokinetic chromatography. Pascoe RJ, Foley JP. Electrophoresis; 2003 Dec 19; 24(24):4227-40. PubMed ID: 14679570 [Abstract] [Full Text] [Related]
12. Separation of very hydrophobic analytes by micellar electrokinetic chromatography. III. Characterization and optimization of the composition of the separation electrolyte using carbon number equivalents. Huhn C, Pütz M, Pyell U. Electrophoresis; 2008 Feb 19; 29(4):783-95. PubMed ID: 18213601 [Abstract] [Full Text] [Related]
13. Solute-solvent interactions in micellar electrokinetic chromatography: V. Factors that produce peak splitting. Ràfols C, Poza A, Fuguet E, Rosés M, Bosch E. Electrophoresis; 2002 Aug 19; 23(15):2408-16. PubMed ID: 12210196 [Abstract] [Full Text] [Related]
14. Micelle to solvent stacking of organic cations in micellar electrokinetic chromatography with sodium dodecyl sulfate. Quirino JP, Aranas AT. J Chromatogr A; 2011 Oct 14; 1218(41):7377-83. PubMed ID: 21903217 [Abstract] [Full Text] [Related]
15. Retention modeling and resolution optimization for a group of N-phenylpyrazole derivatives in micellar electrokinetic chromatography using empirical and physicochemical models. García-Ruiz C, Jiménez O, Marina ML. Electrophoresis; 2003 Jan 14; 24(3):325-35. PubMed ID: 12569524 [Abstract] [Full Text] [Related]
16. Chiral separation of amino acid esters by micellar electrokinetic chromatography. Salami M, Otto HH, Jira T. Electrophoresis; 2001 Sep 14; 22(15):3291-6. PubMed ID: 11589293 [Abstract] [Full Text] [Related]
17. Analysis of lignans using micellar electrokinetic chromatography. Kuo CH, Lee SS, Chang HY, Sun SW. Electrophoresis; 2003 Mar 14; 24(6):1047-53. PubMed ID: 12658694 [Abstract] [Full Text] [Related]
18. Formamide as an organic modifier in MEKC with SDS. Téllez A, Kenndler E. Electrophoresis; 2009 Jan 14; 30(2):357-64. PubMed ID: 19123192 [Abstract] [Full Text] [Related]
19. Separation of a group of N-phenylpyrazole derivatives by micellar electrokinetic chromatography: application to the determination of solute-micelle association constants and estimation of the hydrophobicity. García-Ruiz C, García MA, Marina ML. Electrophoresis; 2000 Jul 14; 21(12):2424-31. PubMed ID: 10939455 [Abstract] [Full Text] [Related]
20. Polymeric sulfated surfactants with varied hydrocarbon tail: I. Synthesis, characterization, and application in micellar electrokinetic chromatography. Akbay C, Shamsi SA. Electrophoresis; 2004 Feb 14; 25(4-5):622-34. PubMed ID: 14981690 [Abstract] [Full Text] [Related] Page: [Next] [New Search]