These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


191 related items for PubMed ID: 10555173

  • 1. Kinetics of PCr to ATP and beta-ATP to beta-ADP phosphoryl conversion are modified in working rat skeletal muscle after training.
    Ravalec X, Le Tallec N, Carré F, de Certaines JD, Le Rumeur E.
    MAGMA; 1999 Oct; 9(1-2):52-8. PubMed ID: 10555173
    [Abstract] [Full Text] [Related]

  • 2. Kinetics of ATP to ADP beta-phosphoryl conversion in contracting skeletal muscle by in vivo 31P NMR magnetization transfer.
    Le Rumeur E, Le Tallec N, Kernec F, de Certaines JD.
    NMR Biomed; 1997 Apr; 10(2):67-72. PubMed ID: 9267863
    [Abstract] [Full Text] [Related]

  • 3. Improvement of muscular oxidative capacity by training is associated with slight acidosis and ATP depletion in exercising muscles.
    Ravalec X, Le Tallec N, Carré F, de Certaines JD, Le Rumeur E.
    Muscle Nerve; 1996 Mar; 19(3):355-61. PubMed ID: 8606701
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Impaired resting muscle energetics studied by (31)P-NMR in diet-induced obese rats.
    Chanseaume E, Bielicki G, Tardy AL, Renou JP, Freyssenet D, Boirie Y, Morio B.
    Obesity (Silver Spring); 2008 Mar; 16(3):572-7. PubMed ID: 18239558
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Phosphorylation potential in the dominant leg is lower, and [ADPfree] is higher in calf muscles at rest in endurance athletes than in sprinters and in untrained subjects.
    Zoladz JA, Kulinowski P, Zapart-Bukowska J, Grandys M, Majerczak J, Korzeniewski B, Jasiński A.
    J Physiol Pharmacol; 2007 Dec; 58(4):803-19. PubMed ID: 18195489
    [Abstract] [Full Text] [Related]

  • 10. Creatine kinase activity in rat skeletal muscle with intermittent tetanic stimulation.
    Le Rumeur E, Le Moyec L, de Certaines JD.
    Magn Reson Med; 1992 Apr; 24(2):335-42. PubMed ID: 1569871
    [Abstract] [Full Text] [Related]

  • 11. Skeletal muscle mitochondrial function studied by kinetic analysis of postexercise phosphocreatine resynthesis.
    Thompson CH, Kemp GJ, Sanderson AL, Radda GK.
    J Appl Physiol (1985); 1995 Jun; 78(6):2131-9. PubMed ID: 7665409
    [Abstract] [Full Text] [Related]

  • 12. Compartmentation of high-energy phosphates in resting and working rat skeletal muscle.
    Hebisch S, Soboll S, Schwenen M, Sies H.
    Biochim Biophys Acta; 1984 Feb 27; 764(2):117-24. PubMed ID: 6696884
    [Abstract] [Full Text] [Related]

  • 13. Free [ADP] and aerobic muscle work follow at least second order kinetics in rat gastrocnemius in vivo.
    Cieslar JH, Dobson GP.
    J Biol Chem; 2000 Mar 03; 275(9):6129-34. PubMed ID: 10692403
    [Abstract] [Full Text] [Related]

  • 14. Creatine kinase-catalyzed ATP-phosphocreatine exchange: comparison of 31P-NMR saturation transfer technique and radioisotope tracer methods.
    Kupriyanov VV, Lyulina NV, Steinschneider AYa, Zueva MYu, Saks VA.
    FEBS Lett; 1986 Nov 10; 208(1):89-93. PubMed ID: 3770212
    [Abstract] [Full Text] [Related]

  • 15. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle.
    Kemp GJ, Manners DN, Clark JF, Bastin ME, Radda GK.
    Mol Cell Biochem; 1998 Jul 10; 184(1-2):249-89. PubMed ID: 9746325
    [Abstract] [Full Text] [Related]

  • 16. [ATP-phosphocreatine metabolism catalyzed by creatine kinase. Comparison of saturation transfer (NMR) and isotope labeling technics].
    Kupriianov VV, Liulina NV, Shteĭnshneĭder AIa, Zueva MIu, Saks VA.
    Bioorg Khim; 1987 Mar 10; 13(3):300-8. PubMed ID: 3593427
    [Abstract] [Full Text] [Related]

  • 17. Adenylate kinase-catalyzed phosphoryl transfer couples ATP utilization with its generation by glycolysis in intact muscle.
    Zeleznikar RJ, Dzeja PP, Goldberg ND.
    J Biol Chem; 1995 Mar 31; 270(13):7311-9. PubMed ID: 7706272
    [Abstract] [Full Text] [Related]

  • 18. Energetics studies of muscles of different types.
    Kushmerick MJ.
    Basic Res Cardiol; 1987 Mar 31; 82 Suppl 2():17-30. PubMed ID: 3663016
    [Abstract] [Full Text] [Related]

  • 19. Differences in nucleotide compartmentation and energy state in isolated and in situ rat heart: assessment by 31P-NMR spectroscopy.
    Williams JP, Headrick JP.
    Biochim Biophys Acta; 1996 Aug 07; 1276(1):71-9. PubMed ID: 8764892
    [Abstract] [Full Text] [Related]

  • 20. Regulation of oxidative and glycogenolytic ATP synthesis in exercising rat skeletal muscle studied by 31P magnetic resonance spectroscopy.
    Kemp GJ, Sanderson AL, Thompson CH, Radda GK.
    NMR Biomed; 1996 Sep 07; 9(6):261-70. PubMed ID: 9073304
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.