These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


424 related items for PubMed ID: 10556086

  • 1. The nuclear exportin Msn5 is required for nuclear export of the Mig1 glucose repressor of Saccharomyces cerevisiae.
    DeVit MJ, Johnston M.
    Curr Biol; 1999 Nov 04; 9(21):1231-41. PubMed ID: 10556086
    [Abstract] [Full Text] [Related]

  • 2. Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae.
    Treitel MA, Kuchin S, Carlson M.
    Mol Cell Biol; 1998 Nov 04; 18(11):6273-80. PubMed ID: 9774644
    [Abstract] [Full Text] [Related]

  • 3. Hxk2 regulates the phosphorylation state of Mig1 and therefore its nucleocytoplasmic distribution.
    Ahuatzi D, Riera A, Pela Ez R, Herrero P, Moreno F.
    J Biol Chem; 2007 Feb 16; 282(7):4485-4493. PubMed ID: 17178716
    [Abstract] [Full Text] [Related]

  • 4. Regulatory elements in the FBP1 promoter respond differently to glucose-dependent signals in Saccharomyces cerevisiae.
    Zaragoza O, Vincent O, Gancedo JM.
    Biochem J; 2001 Oct 01; 359(Pt 1):193-201. PubMed ID: 11563983
    [Abstract] [Full Text] [Related]

  • 5. The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8-Tup1 co-repressor.
    Papamichos-Chronakis M, Gligoris T, Tzamarias D.
    EMBO Rep; 2004 Apr 01; 5(4):368-72. PubMed ID: 15031717
    [Abstract] [Full Text] [Related]

  • 6. Synergistic release from glucose repression by mig1 and ssn mutations in Saccharomyces cerevisiae.
    Vallier LG, Carlson M.
    Genetics; 1994 May 01; 137(1):49-54. PubMed ID: 8056322
    [Abstract] [Full Text] [Related]

  • 7. The Snf1 kinase of the filamentous fungus Hypocrea jecorina phosphorylates regulation-relevant serine residues in the yeast carbon catabolite repressor Mig1 but not in the filamentous fungal counterpart Cre1.
    Cziferszky A, Seiboth B, Kubicek CP.
    Fungal Genet Biol; 2003 Nov 01; 40(2):166-75. PubMed ID: 14516769
    [Abstract] [Full Text] [Related]

  • 8. Mig1 localization exhibits biphasic behavior which is controlled by both metabolic and regulatory roles of the sugar kinases.
    Schmidt GW, Welkenhuysen N, Ye T, Cvijovic M, Hohmann S.
    Mol Genet Genomics; 2020 Nov 01; 295(6):1489-1500. PubMed ID: 32948893
    [Abstract] [Full Text] [Related]

  • 9. Four hydrophobic amino acid residues in the C-terminal effector domain of the yeast Mig1p repressor are important for its in vivo activity.
    Ostling J, Cassart JP, Vandenhaute J, Ronne H.
    Mol Gen Genet; 1998 Nov 01; 260(2-3):269-79. PubMed ID: 9862481
    [Abstract] [Full Text] [Related]

  • 10. Regulated nuclear translocation of the Mig1 glucose repressor.
    De Vit MJ, Waddle JA, Johnston M.
    Mol Biol Cell; 1997 Aug 01; 8(8):1603-18. PubMed ID: 9285828
    [Abstract] [Full Text] [Related]

  • 11. Nuclear export of Ho endonuclease of yeast via Msn5.
    Bakhrat A, Baranes-Bachar K, Reshef D, Voloshin O, Krichevsky O, Raveh D.
    Curr Genet; 2008 Nov 01; 54(5):271-81. PubMed ID: 18807043
    [Abstract] [Full Text] [Related]

  • 12. Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein.
    Treitel MA, Carlson M.
    Proc Natl Acad Sci U S A; 1995 Apr 11; 92(8):3132-6. PubMed ID: 7724528
    [Abstract] [Full Text] [Related]

  • 13. The glucose-regulated nuclear localization of hexokinase 2 in Saccharomyces cerevisiae is Mig1-dependent.
    Ahuatzi D, Herrero P, de la Cera T, Moreno F.
    J Biol Chem; 2004 Apr 02; 279(14):14440-6. PubMed ID: 14715653
    [Abstract] [Full Text] [Related]

  • 14. The receptor Msn5 exports the phosphorylated transcription factor Pho4 out of the nucleus.
    Kaffman A, Rank NM, O'Neill EM, Huang LS, O'Shea EK.
    Nature; 1998 Dec 03; 396(6710):482-6. PubMed ID: 9853758
    [Abstract] [Full Text] [Related]

  • 15. Characterization of three related glucose repressors and genes they regulate in Saccharomyces cerevisiae.
    Lutfiyya LL, Iyer VR, DeRisi J, DeVit MJ, Brown PO, Johnston M.
    Genetics; 1998 Dec 03; 150(4):1377-91. PubMed ID: 9832517
    [Abstract] [Full Text] [Related]

  • 16. Interaction of the repressors Nrg1 and Nrg2 with the Snf1 protein kinase in Saccharomyces cerevisiae.
    Vyas VK, Kuchin S, Carlson M.
    Genetics; 2001 Jun 03; 158(2):563-72. PubMed ID: 11404322
    [Abstract] [Full Text] [Related]

  • 17. A subset of FG-nucleoporins is necessary for efficient Msn5-mediated nuclear protein export.
    Finn EM, DeRoo EP, Clement GW, Rao S, Kruse SE, Kokanovich KM, Belanger KD.
    Biochim Biophys Acta; 2013 May 03; 1833(5):1096-103. PubMed ID: 23295456
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Yeast AMP-activated protein kinase monitors glucose concentration changes and absolute glucose levels.
    Bendrioua L, Smedh M, Almquist J, Cvijovic M, Jirstrand M, Goksör M, Adiels CB, Hohmann S.
    J Biol Chem; 2014 May 02; 289(18):12863-75. PubMed ID: 24627493
    [Abstract] [Full Text] [Related]

  • 20. Comparative analysis in three fungi reveals structurally and functionally conserved regions in the Mig1 repressor.
    Cassart JP, Ostling J, Ronne H, Vandenhaute J.
    Mol Gen Genet; 1997 Jun 02; 255(1):9-18. PubMed ID: 9230894
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 22.