These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
145 related items for PubMed ID: 10562541
1. An unstable transmembrane segment in the cystic fibrosis transmembrane conductance regulator. Tector M, Hartl FU. EMBO J; 1999 Nov 15; 18(22):6290-8. PubMed ID: 10562541 [Abstract] [Full Text] [Related]
2. Topogenesis of cystic fibrosis transmembrane conductance regulator (CFTR): regulation by the amino terminal transmembrane sequences. Chen M, Zhang JT. Biochemistry; 1999 Apr 27; 38(17):5471-7. PubMed ID: 10220334 [Abstract] [Full Text] [Related]
3. Channel-lining residues in the M3 membrane-spanning segment of the cystic fibrosis transmembrane conductance regulator. Akabas MH. Biochemistry; 1998 Sep 01; 37(35):12233-40. PubMed ID: 9724537 [Abstract] [Full Text] [Related]
4. The human DnaJ homologue (Hdj)-1/heat-shock protein (Hsp) 40 co-chaperone is required for the in vivo stabilization of the cystic fibrosis transmembrane conductance regulator by Hsp70. Farinha CM, Nogueira P, Mendes F, Penque D, Amaral MD. Biochem J; 2002 Sep 15; 366(Pt 3):797-806. PubMed ID: 12069690 [Abstract] [Full Text] [Related]
5. Transmembrane domain of cystic fibrosis transmembrane conductance regulator: design, characterization, and secondary structure of synthetic peptides m1-m6. Wigley WC, Vijayakumar S, Jones JD, Slaughter C, Thomas PJ. Biochemistry; 1998 Jan 20; 37(3):844-53. PubMed ID: 9454574 [Abstract] [Full Text] [Related]
7. Correctors promote folding of the CFTR in the endoplasmic reticulum. Loo TW, Bartlett MC, Clarke DM. Biochem J; 2008 Jul 01; 413(1):29-36. PubMed ID: 18361776 [Abstract] [Full Text] [Related]
8. Biochemical implications of sequence comparisons of the cystic fibrosis transmembrane conductance regulator. Tan AL, Ong SA, Venkatesh B. Arch Biochem Biophys; 2002 May 15; 401(2):215-22. PubMed ID: 12054472 [Abstract] [Full Text] [Related]
15. Misfolding of the cystic fibrosis transmembrane conductance regulator and disease. Cheung JC, Deber CM. Biochemistry; 2008 Feb 12; 47(6):1465-73. PubMed ID: 18193900 [Abstract] [Full Text] [Related]
16. Role of the extracellular loop in the folding of a CFTR transmembrane helical hairpin. Wehbi H, Rath A, Glibowicka M, Deber CM. Biochemistry; 2007 Jun 19; 46(24):7099-106. PubMed ID: 17516627 [Abstract] [Full Text] [Related]
17. N-terminal CFTR missense variants severely affect the behavior of the CFTR chloride channel. Gené GG, Llobet A, Larriba S, de Semir D, Martínez I, Escalada A, Solsona C, Casals T, Aran JM. Hum Mutat; 2008 May 19; 29(5):738-49. PubMed ID: 18306312 [Abstract] [Full Text] [Related]
18. Stable dimeric assembly of the second membrane-spanning domain of CFTR (cystic fibrosis transmembrane conductance regulator) reconstitutes a chloride-selective pore. Ramjeesingh M, Ugwu F, Li C, Dhani S, Huan LJ, Wang Y, Bear CE. Biochem J; 2003 Nov 01; 375(Pt 3):633-41. PubMed ID: 12892562 [Abstract] [Full Text] [Related]
19. Expression in Escherichia coli of cytoplasmic portions of the cystic fibrosis transmembrane conductance regulator: apparent bacterial toxicity of peptides containing R-domain sequences. Yike I, Zhang Y, Ye J, Dearborn DG. Protein Expr Purif; 1996 Feb 01; 7(1):45-50. PubMed ID: 9172782 [Abstract] [Full Text] [Related]
20. Co- and posttranslational translocation mechanisms direct cystic fibrosis transmembrane conductance regulator N terminus transmembrane assembly. Lu Y, Xiong X, Helm A, Kimani K, Bragin A, Skach WR. J Biol Chem; 1998 Jan 02; 273(1):568-76. PubMed ID: 9417117 [Abstract] [Full Text] [Related] Page: [Next] [New Search]