These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


391 related items for PubMed ID: 10569638

  • 1. Myeloperoxidase-catalyzed redox-cycling of phenol promotes lipid peroxidation and thiol oxidation in HL-60 cells.
    Goldman R, Claycamp GH, Sweetland MA, Sedlov AV, Tyurin VA, Kisin ER, Tyurina YY, Ritov VB, Wenger SL, Grant SG, Kagan VE.
    Free Radic Biol Med; 1999 Nov; 27(9-10):1050-63. PubMed ID: 10569638
    [Abstract] [Full Text] [Related]

  • 2. Mechanism-based chemopreventive strategies against etoposide-induced acute myeloid leukemia: free radical/antioxidant approach.
    Kagan VE, Yalowich JC, Borisenko GG, Tyurina YY, Tyurin VA, Thampatty P, Fabisiak JP.
    Mol Pharmacol; 1999 Sep; 56(3):494-506. PubMed ID: 10462537
    [Abstract] [Full Text] [Related]

  • 3. Pro-oxidant and antioxidant mechanisms of etoposide in HL-60 cells: role of myeloperoxidase.
    Kagan VE, Kuzmenko AI, Tyurina YY, Shvedova AA, Matsura T, Yalowich JC.
    Cancer Res; 2001 Nov 01; 61(21):7777-84. PubMed ID: 11691792
    [Abstract] [Full Text] [Related]

  • 4. Redox cycling of phenol induces oxidative stress in human epidermal keratinocytes.
    Shvedova AA, Kommineni C, Jeffries BA, Castranova V, Tyurina YY, Tyurin VA, Serbinova EA, Fabisiak JP, Kagan VE.
    J Invest Dermatol; 2000 Feb 01; 114(2):354-64. PubMed ID: 10651998
    [Abstract] [Full Text] [Related]

  • 5. Phenoxyl radical-induced thiol-dependent generation of reactive oxygen species: implications for benzene toxicity.
    Stoyanovsky DA, Goldman R, Claycamp HG, Kagan VE.
    Arch Biochem Biophys; 1995 Mar 10; 317(2):315-23. PubMed ID: 7893144
    [Abstract] [Full Text] [Related]

  • 6. Detection and characterization of the electron paramagnetic resonance-silent glutathionyl-5,5-dimethyl-1-pyrroline N-oxide adduct derived from redox cycling of phenoxyl radicals in model systems and HL-60 cells.
    Stoyanovosky DA, Goldman R, Jonnalagadda SS, Day BW, Claycamp HG, Kagan VE.
    Arch Biochem Biophys; 1996 Jun 01; 330(1):3-11. PubMed ID: 8651701
    [Abstract] [Full Text] [Related]

  • 7. Direct evidence for recycling of myeloperoxidase-catalyzed phenoxyl radicals of a vitamin E homologue, 2,2,5,7,8-pentamethyl-6-hydroxy chromane, by ascorbate/dihydrolipoate in living HL-60 cells.
    Kagan VE, Kuzmenko AI, Shvedova AA, Kisin ER, Li R, Martin I, Quinn PJ, Tyurin VA, Tyurina YY, Yalowich JC.
    Biochim Biophys Acta; 2003 Mar 17; 1620(1-3):72-84. PubMed ID: 12595076
    [Abstract] [Full Text] [Related]

  • 8. Glutathione propagates oxidative stress triggered by myeloperoxidase in HL-60 cells. Evidence for glutathionyl radical-induced peroxidation of phospholipids and cytotoxicity.
    Borisenko GG, Martin I, Zhao Q, Amoscato AA, Tyurina YY, Kagan VE.
    J Biol Chem; 2004 May 28; 279(22):23453-62. PubMed ID: 15039448
    [Abstract] [Full Text] [Related]

  • 9. Peroxidase-catalyzed pro- versus antioxidant effects of 4-hydroxytamoxifen: enzyme specificity and biochemical sequelae.
    Day BW, Tyurin VA, Tyurina YY, Liu M, Facey JA, Carta G, Kisin ER, Dubey RK, Kagan VE.
    Chem Res Toxicol; 1999 Jan 28; 12(1):28-37. PubMed ID: 9894015
    [Abstract] [Full Text] [Related]

  • 10. Anti-/pro-oxidant effects of phenolic compounds in cells: are colchicine metabolites chain-breaking antioxidants?
    Modriansky M, Tyurina YY, Tyurin VA, Matsura T, Shvedova AA, Yalowich JC, Kagan VE.
    Toxicology; 2002 Aug 01; 177(1):105-17. PubMed ID: 12126799
    [Abstract] [Full Text] [Related]

  • 11. Myeloperoxidase-catalyzed phenoxyl radicals of vitamin E homologue, 2,2,5,7,8-pentamethyl- 6-hydroxychromane, do not induce oxidative stress in live HL-60 cells.
    Kagan VE, Kuzmenko AI, Shvedova AA, Kisin ER, Tyurina YY, Yalowich JC.
    Biochem Biophys Res Commun; 2000 Apr 21; 270(3):1086-92. PubMed ID: 10772954
    [Abstract] [Full Text] [Related]

  • 12. Peroxidase-catalyzed oxidation of beta-carotene in HL-60 cells and in model systems: involvement of phenoxyl radicals.
    Tyurin VA, Carta G, Tyurina YY, Banni S, Day BW, Corongiu FP, Kagan VE.
    Lipids; 1997 Feb 21; 32(2):131-42. PubMed ID: 9075202
    [Abstract] [Full Text] [Related]

  • 13. Nitroxides scavenge myeloperoxidase-catalyzed thiyl radicals in model systems and in cells.
    Borisenko GG, Martin I, Zhao Q, Amoscato AA, Kagan VE.
    J Am Chem Soc; 2004 Aug 04; 126(30):9221-32. PubMed ID: 15281811
    [Abstract] [Full Text] [Related]

  • 14. Ascorbate interacts with reduced glutathione to scavenge phenoxyl radicals in HL60 cells.
    Cuddihy SL, Parker A, Harwood DT, Vissers MC, Winterbourn CC.
    Free Radic Biol Med; 2008 Apr 15; 44(8):1637-44. PubMed ID: 18291121
    [Abstract] [Full Text] [Related]

  • 15. Ascorbate is the primary reductant of the phenoxyl radical of etoposide in the presence of thiols both in cell homogenates and in model systems.
    Kagan VE, Yalowich JC, Day BW, Goldman R, Gantchev TG, Stoyanovsky DA.
    Biochemistry; 1994 Aug 16; 33(32):9651-60. PubMed ID: 8068642
    [Abstract] [Full Text] [Related]

  • 16. Direct oxidation of polyunsaturated cis-parinaric fatty acid by phenoxyl radicals generated by peroxidase/H2O2 in model systems and in HL-60 cells.
    Ritov VB, Menshikova EV, Goldman R, Kagan VE.
    Toxicol Lett; 1996 Oct 16; 87(2-3):121-9. PubMed ID: 8914620
    [Abstract] [Full Text] [Related]

  • 17. Bifunctional anti/prooxidant potential of metallothionenin: redox signaling of copper binding and release.
    Fabisiak JP, Pearce LL, Borisenko GG, Tyhurina YY, Tyurin VA, Razzack J, Lazo JS, Pitt BR, Kagan VE.
    Antioxid Redox Signal; 1999 Oct 16; 1(3):349-64. PubMed ID: 11229446
    [Abstract] [Full Text] [Related]

  • 18. Reduction of phenoxyl radicals by thioredoxin results in selective oxidation of its SH-groups to disulfides. An antioxidant function of thioredoxin.
    Goldman R, Stoyanovsky DA, Day BW, Kagan VE.
    Biochemistry; 1995 Apr 11; 34(14):4765-72. PubMed ID: 7718583
    [Abstract] [Full Text] [Related]

  • 19. Myeloperoxidase-mediated oxidation of edaravone produces an apparent non-toxic free radical metabolite and modulates hydrogen peroxide-mediated cytotoxicity in HL-60 cells.
    Suh LYK, Babu D, Tonoyan L, Reiz B, Whittal R, Tabatabaei-Dakhili SA, Morgan AG, Velázquez-Martínez CA, Siraki AG.
    Free Radic Biol Med; 2019 Nov 01; 143():422-432. PubMed ID: 31445206
    [Abstract] [Full Text] [Related]

  • 20. Aminoglutethimide-induced protein free radical formation on myeloperoxidase: a potential mechanism of agranulocytosis.
    Siraki AG, Bonini MG, Jiang J, Ehrenshaft M, Mason RP.
    Chem Res Toxicol; 2007 Jul 01; 20(7):1038-45. PubMed ID: 17602675
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.