These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
240 related items for PubMed ID: 10572002
1. Enhanced efficiency of ATP hydrolysis during nitrogenase catalysis utilizing reductants that form the all-ferrous redox state of the Fe protein. Erickson JA, Nyborg AC, Johnson JL, Truscott SM, Gunn A, Nordmeyer FR, Watt GD. Biochemistry; 1999 Oct 26; 38(43):14279-85. PubMed ID: 10572002 [Abstract] [Full Text] [Related]
2. Evidence for a two-electron transfer using the all-ferrous Fe protein during nitrogenase catalysis. Nyborg AC, Johnson JL, Gunn A, Watt GD. J Biol Chem; 2000 Dec 15; 275(50):39307-12. PubMed ID: 11005818 [Abstract] [Full Text] [Related]
3. Evidence for electron transfer from the nitrogenase iron protein to the molybdenum-iron protein without MgATP hydrolysis: characterization of a tight protein-protein complex. Lanzilotta WN, Fisher K, Seefeldt LC. Biochemistry; 1996 Jun 04; 35(22):7188-96. PubMed ID: 8679547 [Abstract] [Full Text] [Related]
4. Nitrogenase of Azotobacter vinelandii: kinetic analysis of the Fe protein redox cycle. Duyvis MG, Wassink H, Haaker H. Biochemistry; 1998 Dec 15; 37(50):17345-54. PubMed ID: 9860849 [Abstract] [Full Text] [Related]
5. Effects on substrate reduction of substitution of histidine-195 by glutamine in the alpha-subunit of the MoFe protein of Azotobacter vinelandii nitrogenase. Dilworth MJ, Fisher K, Kim CH, Newton WE. Biochemistry; 1998 Dec 15; 37(50):17495-505. PubMed ID: 9860864 [Abstract] [Full Text] [Related]
6. Nucleotide-assisted [Fe4S4] redox state interconversions of the Azotobacter vinelandii Fe protein and their relevance to nitrogenase catalysis. Jacobs D, Watt GD. Biochemistry; 2013 Jul 16; 52(28):4791-9. PubMed ID: 23815521 [Abstract] [Full Text] [Related]
7. Evidence That the Pi Release Event Is the Rate-Limiting Step in the Nitrogenase Catalytic Cycle. Yang ZY, Ledbetter R, Shaw S, Pence N, Tokmina-Lukaszewska M, Eilers B, Guo Q, Pokhrel N, Cash VL, Dean DR, Antony E, Bothner B, Peters JW, Seefeldt LC. Biochemistry; 2016 Jul 05; 55(26):3625-35. PubMed ID: 27295169 [Abstract] [Full Text] [Related]
8. Pre-steady-state MgATP-dependent proton production and electron transfer by nitrogenase from Azotobacter vinelandii. Duyvis MG, Wassink H, Haaker H. Eur J Biochem; 1994 Nov 01; 225(3):881-90. PubMed ID: 7957225 [Abstract] [Full Text] [Related]
9. Hydrolysis of nucleoside triphosphates other than ATP by nitrogenase. Ryle MJ, Seefeldt LC. J Biol Chem; 2000 Mar 03; 275(9):6214-9. PubMed ID: 10692415 [Abstract] [Full Text] [Related]
10. The role of MgATP hydrolysis in nitrogenase catalysis. Cordewener J, Krüse-Wolters M, Wassink H, Haaker H, Veeger C. Eur J Biochem; 1988 Mar 15; 172(3):739-45. PubMed ID: 2965012 [Abstract] [Full Text] [Related]
11. Reactions of Azotobacter vinelandii nitrogenase using Ti(III) as reductant. Nyborg AC, Erickson JA, Johnson JL, Gunn A, Truscott SM, Watt GD. J Inorg Biochem; 2000 Mar 15; 78(4):371-81. PubMed ID: 10857919 [Abstract] [Full Text] [Related]
17. Formation of a tight 1:1 complex of Clostridium pasteurianum Fe protein-Azotobacter vinelandii MoFe protein: evidence for long-range interactions between the Fe protein binding sites during catalytic hydrogen evolution. Clarke TA, Maritano S, Eady RR. Biochemistry; 2000 Sep 19; 39(37):11434-40. PubMed ID: 10985789 [Abstract] [Full Text] [Related]
20. Pre-steady-state kinetics of nitrogenase from Azotobacter vinelandii. Evidence for an ATP-induced conformational change of the nitrogenase complex as part of the reaction mechanism. Duyvis MG, Wassink H, Haaker H. J Biol Chem; 1996 Nov 22; 271(47):29632-6. PubMed ID: 8939894 [Abstract] [Full Text] [Related] Page: [Next] [New Search]