These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. [Determination of activity of aspartic proteinases by cleavage of new chromogenic substrates]. Litvinova OV, Balandina GN, Stepanov VM. Bioorg Khim; 1998 Mar; 24(3):175-8. PubMed ID: 9612558 [Abstract] [Full Text] [Related]
3. [Synthesis of new chromogenic substrates for aspartyl proteases]. Litvinova OV, Balandina GN, Stepanov VM. Bioorg Khim; 1998 Jan; 24(1):10-5. PubMed ID: 9551195 [Abstract] [Full Text] [Related]
4. The pH dependence of the hydrolysis of chromogenic substrates of the type, Lys-Pro-Xaa-Yaa-Phe-(NO2)Phe-Arg-Leu, by selected aspartic proteinases: evidence for specific interactions in subsites S3 and S2. Dunn BM, Valler MJ, Rolph CE, Foundling SI, Jimenez M, Kay J. Biochim Biophys Acta; 1987 Jun 17; 913(2):122-30. PubMed ID: 3109484 [Abstract] [Full Text] [Related]
5. [A study of aspartyl proteases using intramolecularly quenched fluorogenic peptide substrates]. Filippova IIu, Lysogorskaia EN, Lavrenova GI, Oksenoĭt ES, Suvorov LI, Starovoĭtova VV. Bioorg Khim; 2000 Mar 17; 26(3):192-6. PubMed ID: 10816817 [Abstract] [Full Text] [Related]
7. Active-site specificity of digestive aspartic peptidases from the four species of Plasmodium that infect humans using chromogenic combinatorial peptide libraries. Beyer BB, Johnson JV, Chung AY, Li T, Madabushi A, Agbandje-McKenna M, McKenna R, Dame JB, Dunn BM. Biochemistry; 2005 Feb 15; 44(6):1768-79. PubMed ID: 15697202 [Abstract] [Full Text] [Related]
10. Differences in the P1' substrate specificities of pepsin A and chymosin. Kageyama H, Ueda H, Tezuka T, Ogasawara A, Narita Y, Kageyama T, Ichinose M. J Biochem; 2010 Feb 15; 147(2):167-74. PubMed ID: 19819898 [Abstract] [Full Text] [Related]
13. Synthesis and hydrolysis by arginyl-hydrolases of p-nitroanilide chromogenic substrates containing polyethylene glycol and D-gluconyl moieties. Juliano MA, Juliano L, Biondi L, Rocchi R. Pept Res; 1991 Feb 15; 4(6):334-9. PubMed ID: 1821168 [Abstract] [Full Text] [Related]
14. Exploration of subsite binding specificity of human cathepsin D through kinetics and rule-based molecular modeling. Scarborough PE, Guruprasad K, Topham C, Richo GR, Conner GE, Blundell TL, Dunn BM. Protein Sci; 1993 Feb 15; 2(2):264-76. PubMed ID: 8443603 [Abstract] [Full Text] [Related]
16. Sensitive, soluble chromogenic substrates for HIV-1 proteinase. Richards AD, Phylip LH, Farmerie WG, Scarborough PE, Alvarez A, Dunn BM, Hirel PH, Konvalinka J, Strop P, Pavlickova L. J Biol Chem; 1990 May 15; 265(14):7733-6. PubMed ID: 2186027 [Abstract] [Full Text] [Related]
17. Substrate specificities of pepstatin-insensitive carboxyl proteinases from gram-negative bacteria. Ito M, Dunn BM, Oda K. J Biochem; 1996 Oct 15; 120(4):845-50. PubMed ID: 8947851 [Abstract] [Full Text] [Related]
18. NMR study of the inhibition of pepsin by glyoxal inhibitors: mechanism of tetrahedral intermediate stabilization by the aspartyl proteases. Cosgrove S, Rogers L, Hewage CM, Malthouse JP. Biochemistry; 2007 Oct 02; 46(39):11205-15. PubMed ID: 17824620 [Abstract] [Full Text] [Related]
19. Design, chemical synthesis and kinetic studies of trypsin chromogenic substrates based on the proteinase binding loop of Cucurbita maxima trypsin inhibitor (CMTI-III). Lesner A, Brzozowski K, Kupryszewski G, Rolka K. Biochem Biophys Res Commun; 2000 Mar 05; 269(1):81-4. PubMed ID: 10694481 [Abstract] [Full Text] [Related]
20. Synthetic peptides for chymosin and pepsin assays: pH effect and pepsin independent-determination in mixtures. Salesse R, Garnier J. J Dairy Sci; 1976 Jul 05; 59(7):1215-21. PubMed ID: 7580 [Abstract] [Full Text] [Related] Page: [Next] [New Search]