These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. [Gene engineering of salt tolerance in higher plants]. Hayashi H, Sakamoto A, Murata N. Tanpakushitsu Kakusan Koso; 1999 Nov; 44(15 Suppl):2221-9. PubMed ID: 10586660 [No Abstract] [Full Text] [Related]
3. Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. Chen Z, Cuin TA, Zhou M, Twomey A, Naidu BP, Shabala S. J Exp Bot; 2007 Nov; 58(15-16):4245-55. PubMed ID: 18182428 [Abstract] [Full Text] [Related]
4. [Roles of drought-inducible genes in stress tolerance and signal transduction]. Katagiri T, Nanjo T, Shinozaki K, Yamaguchi-Sinozaki K. Tanpakushitsu Kakusan Koso; 1999 Nov; 44(15 Suppl):2188-98. PubMed ID: 10586656 [No Abstract] [Full Text] [Related]
5. Mechanisms of high salinity tolerance in plants. Tuteja N. Methods Enzymol; 2007 Nov; 428():419-38. PubMed ID: 17875432 [Abstract] [Full Text] [Related]
6. An inland and a coastal population of the Mediterranean xero-halophyte species Atriplex halimus L. differ in their ability to accumulate proline and glycinebetaine in response to salinity and water stress. Ben Hassine A, Ghanem ME, Bouzid S, Lutts S. J Exp Bot; 2008 Nov; 59(6):1315-26. PubMed ID: 18385490 [Abstract] [Full Text] [Related]
8. Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. Sakamoto A, Murata N. J Exp Bot; 2000 Jan; 51(342):81-8. PubMed ID: 10938798 [Abstract] [Full Text] [Related]
10. Accumulation of the compatible solutes, glycine-betaine and ectoine, in osmotic stress adaptation and heat shock cross-protection in the biocontrol agent Pantoea agglomerans CPA-2. Teixidó N, Cañamás TP, Usall J, Torres R, Magan N, Viñas I. Lett Appl Microbiol; 2005 Jan; 41(3):248-52. PubMed ID: 16108915 [Abstract] [Full Text] [Related]
11. Salt tolerance and salinity effects on plants: a review. Parida AK, Das AB. Ecotoxicol Environ Saf; 2005 Mar; 60(3):324-49. PubMed ID: 15590011 [Abstract] [Full Text] [Related]
12. Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Platten JD, Cotsaftis O, Berthomieu P, Bohnert H, Davenport RJ, Fairbairn DJ, Horie T, Leigh RA, Lin HX, Luan S, Mäser P, Pantoja O, Rodríguez-Navarro A, Schachtman DP, Schroeder JI, Sentenac H, Uozumi N, Véry AA, Zhu JK, Dennis ES, Tester M. Trends Plant Sci; 2006 Aug; 11(8):372-4. PubMed ID: 16809061 [No Abstract] [Full Text] [Related]
13. Transgenic Medicago truncatula plants that accumulate proline display nitrogen-fixing activity with enhanced tolerance to osmotic stress. Verdoy D, Coba De La Peña T, Redondo FJ, Lucas MM, Pueyo JJ. Plant Cell Environ; 2006 Oct; 29(10):1913-23. PubMed ID: 16930317 [Abstract] [Full Text] [Related]
14. The role of potassium as an ionic signal in the regulation of cyanobacterium Nostoc muscorum response to salinity and osmotic stress. Bhargava S. J Basic Microbiol; 2005 Oct; 45(3):171-81. PubMed ID: 15900550 [Abstract] [Full Text] [Related]
15. Quantifying the three main components of salinity tolerance in cereals. Rajendran K, Tester M, Roy SJ. Plant Cell Environ; 2009 Mar; 32(3):237-49. PubMed ID: 19054352 [Abstract] [Full Text] [Related]