These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
194 related items for PubMed ID: 10600526
1. Inhibition of biotin carboxylase by a reaction intermediate analog: implications for the kinetic mechanism. Blanchard CZ, Amspacher D, Strongin R, Waldrop GL. Biochem Biophys Res Commun; 1999 Dec 20; 266(2):466-71. PubMed ID: 10600526 [Abstract] [Full Text] [Related]
2. A bisubstrate analog inhibitor of the carboxyltransferase component of acetyl-CoA carboxylase. Levert KL, Waldrop GL. Biochem Biophys Res Commun; 2002 Mar 15; 291(5):1213-7. PubMed ID: 11883946 [Abstract] [Full Text] [Related]
3. Mutations at four active site residues of biotin carboxylase abolish substrate-induced synergism by biotin. Blanchard CZ, Lee YM, Frantom PA, Waldrop GL. Biochemistry; 1999 Mar 16; 38(11):3393-400. PubMed ID: 10079084 [Abstract] [Full Text] [Related]
4. The utility of molecular dynamics simulations for understanding site-directed mutagenesis of glycine residues in biotin carboxylase. Bordelon T, Nilsson Lill SO, Waldrop GL. Proteins; 2009 Mar 16; 74(4):808-19. PubMed ID: 18704941 [Abstract] [Full Text] [Related]
5. Modeling and numerical simulation of biotin carboxylase kinetics: implications for half-sites reactivity. de Queiroz MS, Waldrop GL. J Theor Biol; 2007 May 07; 246(1):167-75. PubMed ID: 17266990 [Abstract] [Full Text] [Related]
6. Complex formation and regulation of Escherichia coli acetyl-CoA carboxylase. Broussard TC, Price AE, Laborde SM, Waldrop GL. Biochemistry; 2013 May 14; 52(19):3346-57. PubMed ID: 23594205 [Abstract] [Full Text] [Related]
7. Purification and characterization of 3-methylcrotonyl-coenzyme-A carboxylase from leaves of Zea mays. Diez TA, Wurtele ES, Nikolau BJ. Arch Biochem Biophys; 1994 Apr 14; 310(1):64-75. PubMed ID: 8161223 [Abstract] [Full Text] [Related]
8. Structural Analysis of Substrate, Reaction Intermediate, and Product Binding in Haemophilus influenzae Biotin Carboxylase. Broussard TC, Pakhomova S, Neau DB, Bonnot R, Waldrop GL. Biochemistry; 2015 Jun 23; 54(24):3860-70. PubMed ID: 26020841 [Abstract] [Full Text] [Related]
9. Effects of acetyl CoA on the pre-steady-state kinetics of the biotin carboxylation reaction of pyruvate carboxylase. Legge GB, Branson JP, Attwood PV. Biochemistry; 1996 Mar 26; 35(12):3849-56. PubMed ID: 8620009 [Abstract] [Full Text] [Related]
10. Function of Escherichia coli biotin carboxylase requires catalytic activity of both subunits of the homodimer. Janiyani K, Bordelon T, Waldrop GL, Cronan JE. J Biol Chem; 2001 Aug 10; 276(32):29864-70. PubMed ID: 11390406 [Abstract] [Full Text] [Related]
11. Kinetic characterization of yeast pyruvate carboxylase isozyme Pyc1 and the Pyc1 mutant, C249A. Branson JP, Nezic M, Jitrapakdee S, Wallace JC, Attwood PV. Biochemistry; 2004 Feb 03; 43(4):1075-81. PubMed ID: 14744153 [Abstract] [Full Text] [Related]
12. Structure of the carboxy-terminal fragment of the apo-biotin carboxyl carrier subunit of Escherichia coli acetyl-CoA carboxylase. Yao X, Wei D, Soden C, Summers MF, Beckett D. Biochemistry; 1997 Dec 09; 36(49):15089-100. PubMed ID: 9398236 [Abstract] [Full Text] [Related]
13. Kinetic characterization of mutations found in propionic acidemia and methylcrotonylglycinuria: evidence for cooperativity in biotin carboxylase. Sloane V, Waldrop GL. J Biol Chem; 2004 Apr 16; 279(16):15772-8. PubMed ID: 14960587 [Abstract] [Full Text] [Related]
14. Insights into the mechanism and regulation of pyruvate carboxylase by characterisation of a biotin-deficient mutant of the Bacillus thermodenitrificans enzyme. Adina-Zada A, Jitrapakdee S, Surinya KH, McIldowie MJ, Piggott MJ, Cleland WW, Wallace JC, Attwood PV. Int J Biochem Cell Biol; 2008 Apr 16; 40(9):1743-52. PubMed ID: 18272421 [Abstract] [Full Text] [Related]
15. On the intermediacy of carboxyphosphate in biotin-dependent carboxylations. Ogita T, Knowles JR. Biochemistry; 1988 Oct 18; 27(21):8028-33. PubMed ID: 2976600 [Abstract] [Full Text] [Related]
16. Umbrella sampling simulations of biotin carboxylase: is a structure with an open ATP grasp domain stable in solution? Novak BR, Moldovan D, Waldrop GL, de Queiroz MS. J Phys Chem B; 2009 Jul 30; 113(30):10097-103. PubMed ID: 19585972 [Abstract] [Full Text] [Related]
17. Structural evidence for substrate-induced synergism and half-sites reactivity in biotin carboxylase. Mochalkin I, Miller JR, Evdokimov A, Lightle S, Yan C, Stover CK, Waldrop GL. Protein Sci; 2008 Oct 30; 17(10):1706-18. PubMed ID: 18725455 [Abstract] [Full Text] [Related]
18. [Mechanism of nicotinic acid inhibition of the reaction catalyzed by acetyl-CoA carboxylase]. Fomenko AI, Pozharun SV, Shushevich SI, Khalmuradov AG. Biokhimiia; 1983 May 30; 48(5):714-7. PubMed ID: 6135454 [Abstract] [Full Text] [Related]
19. Biotin protein ligase from Candida albicans: expression, purification and development of a novel assay. Pendini NR, Bailey LM, Booker GW, Wilce MC, Wallace JC, Polyak SW. Arch Biochem Biophys; 2008 Nov 15; 479(2):163-9. PubMed ID: 18809372 [Abstract] [Full Text] [Related]
20. Site-directed mutagenesis of ATP binding residues of biotin carboxylase. Insight into the mechanism of catalysis. Sloane V, Blanchard CZ, Guillot F, Waldrop GL. J Biol Chem; 2001 Jul 06; 276(27):24991-6. PubMed ID: 11346647 [Abstract] [Full Text] [Related] Page: [Next] [New Search]