These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


231 related items for PubMed ID: 10601451

  • 1. Development and role of GABA(A) receptor-mediated synaptic potentials during swimming in postembryonic Xenopus laevis tadpoles.
    Reith CA, Sillar KT.
    J Neurophysiol; 1999 Dec; 82(6):3175-87. PubMed ID: 10601451
    [Abstract] [Full Text] [Related]

  • 2. Alpha-adrenoreceptor activation modulates swimming via glycinergic and GABAergic inhibitory pathways in Xenopus laevis tadpoles.
    Merrywest SD, Fischer H, Sillar KT.
    Eur J Neurosci; 2002 Jan; 15(2):375-83. PubMed ID: 11849303
    [Abstract] [Full Text] [Related]

  • 3. The spinal GABA system modulates burst frequency and intersegmental coordination in the lamprey: differential effects of GABAA and GABAB receptors.
    Tegnér J, Matsushima T, el Manira A, Grillner S.
    J Neurophysiol; 1993 Mar; 69(3):647-57. PubMed ID: 8385187
    [Abstract] [Full Text] [Related]

  • 4. Involvement of GABA and glycine in recurrent inhibition of spinal motoneurons.
    Schneider SP, Fyffe RE.
    J Neurophysiol; 1992 Aug; 68(2):397-406. PubMed ID: 1326603
    [Abstract] [Full Text] [Related]

  • 5. Transition from GABAergic to glycinergic synaptic transmission in newly formed spinal networks.
    Gao BX, Stricker C, Ziskind-Conhaim L.
    J Neurophysiol; 2001 Jul; 86(1):492-502. PubMed ID: 11431527
    [Abstract] [Full Text] [Related]

  • 6. Sensory activation and role of inhibitory reticulospinal neurons that stop swimming in hatchling frog tadpoles.
    Perrins R, Walford A, Roberts A.
    J Neurosci; 2002 May 15; 22(10):4229-40. PubMed ID: 12019340
    [Abstract] [Full Text] [Related]

  • 7. Synaptic inhibition in the isolated respiratory network of neonatal rats.
    Brockhaus J, Ballanyi K.
    Eur J Neurosci; 1998 Dec 15; 10(12):3823-39. PubMed ID: 9875360
    [Abstract] [Full Text] [Related]

  • 8. Nitric oxide selectively tunes inhibitory synapses to modulate vertebrate locomotion.
    McLean DL, Sillar KT.
    J Neurosci; 2002 May 15; 22(10):4175-84. PubMed ID: 12019335
    [Abstract] [Full Text] [Related]

  • 9. Pre- and postsynaptic modulation of spinal GABAergic neurotransmission by the neurosteroid, 5 beta-pregnan-3 alpha-ol-20-one.
    Reith CA, Sillar KT.
    Brain Res; 1997 Oct 03; 770(1-2):202-12. PubMed ID: 9372220
    [Abstract] [Full Text] [Related]

  • 10. The neuronal targets for GABAergic reticulospinal inhibition that stops swimming in hatchling frog tadpoles.
    Li WC, Perrins R, Walford A, Roberts A.
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Jan 03; 189(1):29-37. PubMed ID: 12548427
    [Abstract] [Full Text] [Related]

  • 11. GABA(B) receptors are the first target of released GABA at lamina I inhibitory synapses in the adult rat spinal cord.
    Chéry N, De Koninck Y.
    J Neurophysiol; 2000 Aug 03; 84(2):1006-11. PubMed ID: 10938323
    [Abstract] [Full Text] [Related]

  • 12. GABAA and glycine receptor-mediated transmission in rat lamina II neurones: relevance to the analgesic actions of neuroactive steroids.
    Mitchell EA, Gentet LJ, Dempster J, Belelli D.
    J Physiol; 2007 Sep 15; 583(Pt 3):1021-40. PubMed ID: 17656439
    [Abstract] [Full Text] [Related]

  • 13. Post-episode depression of GABAergic transmission in spinal neurons of the chick embryo.
    Chub N, O'Donovan MJ.
    J Neurophysiol; 2001 May 15; 85(5):2166-76. PubMed ID: 11353031
    [Abstract] [Full Text] [Related]

  • 14. Distinct roles of glycinergic and GABAergic inhibition in coordinating locomotor-like rhythms in the neonatal mouse spinal cord.
    Hinckley C, Seebach B, Ziskind-Conhaim L.
    Neuroscience; 2005 May 15; 131(3):745-58. PubMed ID: 15730878
    [Abstract] [Full Text] [Related]

  • 15. Depression of spinal network activity by thiopental: shift from phasic to tonic GABA(A) receptor-mediated inhibition.
    Grasshoff C, Netzhammer N, Schweizer J, Antkowiak B, Hentschke H.
    Neuropharmacology; 2008 Oct 15; 55(5):793-802. PubMed ID: 18619475
    [Abstract] [Full Text] [Related]

  • 16. The contribution of the NMDA receptor glycine site to rhythm generation during fictive swimming in Xenopus laevis tadpoles.
    Issberner JP, Sillar KT.
    Eur J Neurosci; 2007 Nov 15; 26(9):2556-64. PubMed ID: 17970719
    [Abstract] [Full Text] [Related]

  • 17. Role of synaptic inhibition in turtle respiratory rhythm generation.
    Johnson SM, Wilkerson JE, Wenninger MR, Henderson DR, Mitchell GS.
    J Physiol; 2002 Oct 01; 544(Pt 1):253-65. PubMed ID: 12356896
    [Abstract] [Full Text] [Related]

  • 18. Differential contribution of GABAergic and glycinergic components to inhibitory synaptic transmission in lamina II and laminae III-IV of the young rat spinal cord.
    Inquimbert P, Rodeau JL, Schlichter R.
    Eur J Neurosci; 2007 Nov 01; 26(10):2940-9. PubMed ID: 18001289
    [Abstract] [Full Text] [Related]

  • 19. GABAergic and glycinergic inhibitory mechanisms in the lamprey respiratory control.
    Bongianni F, Mutolo D, Nardone F, Pantaleo T.
    Brain Res; 2006 May 23; 1090(1):134-45. PubMed ID: 16630584
    [Abstract] [Full Text] [Related]

  • 20. Local effects of glycinergic inhibition in the spinal cord motor systems for swimming in amphibian embryos.
    Perrins R, Soffe SR.
    J Neurophysiol; 1996 Aug 23; 76(2):1025-35. PubMed ID: 8871217
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.