These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


234 related items for PubMed ID: 10606533

  • 1. The human erythrocyte sugar transporter presents two sugar import sites.
    Hamill S, Cloherty EK, Carruthers A.
    Biochemistry; 1999 Dec 21; 38(51):16974-83. PubMed ID: 10606533
    [Abstract] [Full Text] [Related]

  • 2. Stop-flow analysis of cooperative interactions between GLUT1 sugar import and export sites.
    Sultzman LA, Carruthers A.
    Biochemistry; 1999 May 18; 38(20):6640-50. PubMed ID: 10350483
    [Abstract] [Full Text] [Related]

  • 3. The red blood cell glucose transporter presents multiple, nucleotide-sensitive sugar exit sites.
    Cloherty EK, Levine KB, Carruthers A.
    Biochemistry; 2001 Dec 25; 40(51):15549-61. PubMed ID: 11747430
    [Abstract] [Full Text] [Related]

  • 4. Rapid substrate translocation by the multisubunit, erythroid glucose transporter requires subunit associations but not cooperative ligand binding.
    Coderre PE, Cloherty EK, Zottola RJ, Carruthers A.
    Biochemistry; 1995 Aug 01; 34(30):9762-73. PubMed ID: 7626647
    [Abstract] [Full Text] [Related]

  • 5. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK, Heard KS, Carruthers A.
    Biochemistry; 1996 Aug 13; 35(32):10411-21. PubMed ID: 8756697
    [Abstract] [Full Text] [Related]

  • 6. Quench-flow analysis reveals multiple phases of GluT1-mediated sugar transport.
    Blodgett DM, Carruthers A.
    Biochemistry; 2005 Feb 22; 44(7):2650-60. PubMed ID: 15709778
    [Abstract] [Full Text] [Related]

  • 7. Inhibitions of sugar transport produced by ligands binding at opposite sides of the membrane. Evidence for simultaneous occupation of the carrier by maltose and cytochalasin B.
    Carruthers A, Helgerson AL.
    Biochemistry; 1991 Apr 23; 30(16):3907-15. PubMed ID: 2018762
    [Abstract] [Full Text] [Related]

  • 8. ATP-dependent substrate occlusion by the human erythrocyte sugar transporter.
    Heard KS, Fidyk N, Carruthers A.
    Biochemistry; 2000 Mar 21; 39(11):3005-14. PubMed ID: 10715121
    [Abstract] [Full Text] [Related]

  • 9. Membrane-bound glyceraldehyde-3-phosphate dehydrogenase and multiphasic erythrocyte sugar transport.
    Heard KS, Diguette M, Heard AC, Carruthers A.
    Exp Physiol; 1998 Mar 21; 83(2):195-202. PubMed ID: 9568479
    [Abstract] [Full Text] [Related]

  • 10. Cooperative nucleotide binding to the human erythrocyte sugar transporter.
    Cloherty EK, Levine KB, Graybill C, Carruthers A.
    Biochemistry; 2002 Oct 22; 41(42):12639-51. PubMed ID: 12379106
    [Abstract] [Full Text] [Related]

  • 11. Equilibrium ligand binding to the human erythrocyte sugar transporter. Evidence for two sugar-binding sites per carrier.
    Helgerson AL, Carruthers A.
    J Biol Chem; 1987 Apr 25; 262(12):5464-75. PubMed ID: 3571218
    [Abstract] [Full Text] [Related]

  • 12. WZB117 (2-Fluoro-6-(m-hydroxybenzoyloxy) Phenyl m-Hydroxybenzoate) Inhibits GLUT1-mediated Sugar Transport by Binding Reversibly at the Exofacial Sugar Binding Site.
    Ojelabi OA, Lloyd KP, Simon AH, De Zutter JK, Carruthers A.
    J Biol Chem; 2016 Dec 23; 291(52):26762-26772. PubMed ID: 27836974
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Glucose transporter function is controlled by transporter oligomeric structure. A single, intramolecular disulfide promotes GLUT1 tetramerization.
    Zottola RJ, Cloherty EK, Coderre PE, Hansen A, Hebert DN, Carruthers A.
    Biochemistry; 1995 Aug 01; 34(30):9734-47. PubMed ID: 7626644
    [Abstract] [Full Text] [Related]

  • 15. Regulation of GLUT1-mediated sugar transport by an antiport/uniport switch mechanism.
    Cloherty EK, Diamond DL, Heard KS, Carruthers A.
    Biochemistry; 1996 Oct 08; 35(40):13231-9. PubMed ID: 8855962
    [Abstract] [Full Text] [Related]

  • 16. Caffeine inhibits glucose transport by binding at the GLUT1 nucleotide-binding site.
    Sage JM, Cura AJ, Lloyd KP, Carruthers A.
    Am J Physiol Cell Physiol; 2015 May 15; 308(10):C827-34. PubMed ID: 25715702
    [Abstract] [Full Text] [Related]

  • 17. Cytochalasin B does not serve as a marker of glucose transport in rabbit erythrocytes.
    Albert SG.
    Biochem Int; 1984 Jul 15; 9(1):93-103. PubMed ID: 6541046
    [Abstract] [Full Text] [Related]

  • 18. Binding of cytochalasin B to human erythrocyte glucose transporter.
    Sogin DC, Hinkle PC.
    Biochemistry; 1980 Nov 11; 19(23):5417-20. PubMed ID: 7192569
    [Abstract] [Full Text] [Related]

  • 19. Glucose transporter oligomeric structure determines transporter function. Reversible redox-dependent interconversions of tetrameric and dimeric GLUT1.
    Hebert DN, Carruthers A.
    J Biol Chem; 1992 Nov 25; 267(33):23829-38. PubMed ID: 1429721
    [Abstract] [Full Text] [Related]

  • 20. Properties of the human erythrocyte glucose transport protein are determined by cellular context.
    Levine KB, Robichaud TK, Hamill S, Sultzman LA, Carruthers A.
    Biochemistry; 2005 Apr 19; 44(15):5606-16. PubMed ID: 15823019
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.