These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
120 related items for PubMed ID: 10608814
1. Probing the folding pathways of long R(3) insulin-like growth factor-I (LR(3)IGF-I) and IGF-I via capture and identification of disulfide intermediates by cyanylation methodology and mass spectrometry. Yang Y, Wu J, Watson JT. J Biol Chem; 1999 Dec 31; 274(53):37598-604. PubMed ID: 10608814 [Abstract] [Full Text] [Related]
2. Capture and identification of folding intermediates of cystinyl proteins by cyanylation and mass spectrometry. Watson JT, Yang Y, Wu J. J Mol Graph Model; 2001 Dec 31; 19(1):119-28. PubMed ID: 11381521 [Abstract] [Full Text] [Related]
3. Trapping of intermediates during the refolding of recombinant human epidermal growth factor (hEGF) by cyanylation, and subsequent structural elucidation by mass spectrometry. Wu J, Yang Y, Watson JT. Protein Sci; 1998 Apr 31; 7(4):1017-28. PubMed ID: 9568908 [Abstract] [Full Text] [Related]
4. Disulfide exchange folding of insulin-like growth factor I. Hober S, Forsberg G, Palm G, Hartmanis M, Nilsson B. Biochemistry; 1992 Feb 18; 31(6):1749-56. PubMed ID: 1737028 [Abstract] [Full Text] [Related]
5. Putative disulfide-forming pathway of porcine insulin precursor during its refolding in vitro. Qiao ZS, Guo ZY, Feng YM. Biochemistry; 2001 Mar 06; 40(9):2662-8. PubMed ID: 11258877 [Abstract] [Full Text] [Related]
6. Probing the disulfide folding pathway of insulin-like growth factor-I. Milner SJ, Carver JA, Ballard FJ, Francis GL. Biotechnol Bioeng; 1999 Mar 20; 62(6):693-703. PubMed ID: 9951525 [Abstract] [Full Text] [Related]
8. Integration of hydrogen/deuterium exchange and cyanylation-based methodology for conformational studies of cystinyl proteins. Li X, Chou YT, Husain R, Watson JT. Anal Biochem; 2004 Aug 01; 331(1):130-7. PubMed ID: 15246005 [Abstract] [Full Text] [Related]
9. Oxidative refolding of insulin-like growth factor 1 yields two products of similar thermodynamic stability: a bifurcating protein-folding pathway. Miller JA, Narhi LO, Hua QX, Rosenfeld R, Arakawa T, Rohde M, Prestrelski S, Lauren S, Stoney KS, Tsai L. Biochemistry; 1993 May 18; 32(19):5203-13. PubMed ID: 8494897 [Abstract] [Full Text] [Related]
10. Putative folding pathway of insulin-like growth factor-I. Rosenfeld RD, Miller JA, Narhi LO, Hawkins N, Katta V, Lauren S, Weiss MA, Arakawa T. Arch Biochem Biophys; 1997 Jun 15; 342(2):298-305. PubMed ID: 9186491 [Abstract] [Full Text] [Related]
11. Mutation of Arg55/56 to Leu55/Ala56 in insulin-like growth factor-I results in two forms different in disulfide structure and native conformation but similar under reverse-phase conditions. Rosenfeld RD, Noone NM, Lauren SL, Rohde MF, Narhi LO, Arakawa T. J Protein Chem; 1993 Jun 15; 12(3):247-54. PubMed ID: 8397784 [Abstract] [Full Text] [Related]
12. Mutations in the B-domain of insulin-like growth factor-I influence the oxidative folding to yield products with modified biological properties. Milner SJ, Francis GL, Wallace JC, Magee BA, Ballard FJ. Biochem J; 1995 Jun 15; 308 ( Pt 3)(Pt 3):865-71. PubMed ID: 8948444 [Abstract] [Full Text] [Related]
13. Sequences of B-chain/domain 1-10/1-9 of insulin and insulin-like growth factor 1 determine their different folding behavior. Chen Y, You Y, Jin R, Guo ZY, Feng YM. Biochemistry; 2004 Jul 20; 43(28):9225-33. PubMed ID: 15248780 [Abstract] [Full Text] [Related]
14. Equilibrium folding of porcine insulin precursor in the presence of redox buffer: implications for the common intermediates shared by its unfolding/ refolding processes. Zhao J, Huang QL, Tang YH, Guo ZY, Qiao ZS, Xu GJ, Feng YM. Protein Pept Lett; 2008 Jul 20; 15(9):972-9. PubMed ID: 18991774 [Abstract] [Full Text] [Related]
15. Role of native disulfide bonds in the structure and activity of insulin-like growth factor 1: genetic models of protein-folding intermediates. Narhi LO, Hua QX, Arakawa T, Fox GM, Tsai L, Rosenfeld R, Holst P, Miller JA, Weiss MA. Biochemistry; 1993 May 18; 32(19):5214-21. PubMed ID: 8494898 [Abstract] [Full Text] [Related]
16. Peptide models of four possible insulin folding intermediates with two disulfides. Jia XY, Guo ZY, Wang Y, Xu Y, Duan SS, Feng YM. Protein Sci; 2003 Nov 18; 12(11):2412-9. PubMed ID: 14573855 [Abstract] [Full Text] [Related]
17. In vitro refolding of human proinsulin. Kinetic intermediates, putative disulfide-forming pathway folding initiation site, and potential role of C-peptide in folding process. Qiao ZS, Min CY, Hua QX, Weiss MA, Feng YM. J Biol Chem; 2003 May 16; 278(20):17800-9. PubMed ID: 12624089 [Abstract] [Full Text] [Related]
18. The different energetic state of the intra A-chain/domain disulfide of insulin and insulin-like growth factor 1 is mainly controlled by their B-chain/domain. Guo ZY, Shen L, Feng YM. Biochemistry; 2002 Aug 27; 41(34):10585-92. PubMed ID: 12186542 [Abstract] [Full Text] [Related]
19. Disulfide exchange folding of disulfide mutants of insulin-like growth factor I in vitro. Hober S, Uhlén M, Nilsson B. Biochemistry; 1997 Apr 15; 36(15):4616-22. PubMed ID: 9109671 [Abstract] [Full Text] [Related]
20. In vitro refolding/unfolding pathways of amphioxus insulin-like peptide: implications for folding behavior of insulin family proteins. Chen Y, Jin R, Dong HY, Feng YM. J Biol Chem; 2004 Dec 31; 279(53):55224-33. PubMed ID: 15501824 [Abstract] [Full Text] [Related] Page: [Next] [New Search]