These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


378 related items for PubMed ID: 10610125

  • 21. The galloyl moiety of green tea catechins is the critical structural feature to inhibit fatty-acid synthase.
    Wang X, Song KS, Guo QX, Tian WX.
    Biochem Pharmacol; 2003 Nov 15; 66(10):2039-47. PubMed ID: 14599562
    [Abstract] [Full Text] [Related]

  • 22. Effects of epigallocatechin gallate and quercetin on oxidative damage to cellular DNA.
    Johnson MK, Loo G.
    Mutat Res; 2000 Apr 28; 459(3):211-8. PubMed ID: 10812333
    [Abstract] [Full Text] [Related]

  • 23. Radical scavenging activity of phenylpropanoid glycosides in Caryopteris incana.
    Gao JJ, Igalashi K, Nukina M.
    Biosci Biotechnol Biochem; 1999 Jun 28; 63(6):983-8. PubMed ID: 10427683
    [Abstract] [Full Text] [Related]

  • 24. Stopped-flow kinetic study of the aroxyl radical-scavenging action of catechins and vitamin C in ethanol and micellar solutions.
    Mitani S, Ouchi A, Watanabe E, Kanesaki Y, Nagaoka S, Mukai K.
    J Agric Food Chem; 2008 Jun 25; 56(12):4406-17. PubMed ID: 18500808
    [Abstract] [Full Text] [Related]

  • 25. Epimerization of tea catechins and O-methylated derivatives of (-)-epigallocatechin-3-O-gallate: relationship between epimerization and chemical structure.
    Suzuki M, Sano M, Yoshida R, Degawa M, Miyase T, Maeda-Yamamoto M.
    J Agric Food Chem; 2003 Jan 15; 51(2):510-4. PubMed ID: 12517118
    [Abstract] [Full Text] [Related]

  • 26. The galloyl catechins contributing to main antioxidant capacity of tea made from Camellia sinensis in China.
    Zhao C, Li C, Liu S, Yang L.
    ScientificWorldJournal; 2014 Jan 15; 2014():863984. PubMed ID: 25243234
    [Abstract] [Full Text] [Related]

  • 27. Multifunctional activities of green tea catechins in neuroprotection. Modulation of cell survival genes, iron-dependent oxidative stress and PKC signaling pathway.
    Mandel SA, Avramovich-Tirosh Y, Reznichenko L, Zheng H, Weinreb O, Amit T, Youdim MB.
    Neurosignals; 2005 Jan 15; 14(1-2):46-60. PubMed ID: 15956814
    [Abstract] [Full Text] [Related]

  • 28. Free radical scavenging activity of chitooligosaccharides by electron spin resonance spectrometry.
    Park PJ, Je JY, Kim SK.
    J Agric Food Chem; 2003 Jul 30; 51(16):4624-7. PubMed ID: 14705887
    [Abstract] [Full Text] [Related]

  • 29. Catechins in green tea powder (matcha) are heat-stable scavengers of acrolein, a lipid peroxide-derived reactive carbonyl species.
    Sugimoto K, Matsuoka Y, Sakai K, Fujiya N, Fujii H, Mano J.
    Food Chem; 2021 Sep 01; 355():129403. PubMed ID: 33773455
    [Abstract] [Full Text] [Related]

  • 30. Kinetic characterization of the enzymatic and chemical oxidation of the catechins in green tea.
    Munoz-Munoz JL, García-Molina F, Molina-Alarcón M, Tudela J, García-Cánovas F, Rodríguez-López JN.
    J Agric Food Chem; 2008 Oct 08; 56(19):9215-24. PubMed ID: 18788750
    [Abstract] [Full Text] [Related]

  • 31. Synthesis of lipophilic poly-lauroyl-(+)-catechins and radical-scavenging activity.
    Jin G, Yoshioka H.
    Biosci Biotechnol Biochem; 2005 Mar 08; 69(3):440-7. PubMed ID: 15784969
    [Abstract] [Full Text] [Related]

  • 32. Spin-trapping study on the hydroxyl radical formed from a tea catechin-Cu(II) system.
    Yoshioka H, Senba Y, Saito K, Kimura T, Hayakawa F.
    Biosci Biotechnol Biochem; 2001 Aug 08; 65(8):1697-706. PubMed ID: 11577706
    [Abstract] [Full Text] [Related]

  • 33. Determination of tea polyphenols and caffeine in tea flowers (Camellia sinensis) and their hydroxyl radical scavenging and nitric oxide suppressing effects.
    Lin YS, Wu SS, Lin JK.
    J Agric Food Chem; 2003 Feb 12; 51(4):975-80. PubMed ID: 12568558
    [Abstract] [Full Text] [Related]

  • 34. Effects of Epigallocatechin Gallate on the Stability of Epicatechin in a Photolytic Process.
    Huang ST, Hung YA, Yang MJ, Chen IZ, Yuann JP, Liang JY.
    Molecules; 2019 Feb 22; 24(4):. PubMed ID: 30813243
    [Abstract] [Full Text] [Related]

  • 35. [Free radical scavenging activity of 4-hydroxycoumarin derivatives].
    Kirkiacharian S, Bakhchinian R, Chidiack H, Mazmanian M, Planché C.
    Ann Pharm Fr; 1999 May 22; 57(3):251-4. PubMed ID: 10427861
    [Abstract] [Full Text] [Related]

  • 36. Antioxidant benzoylated flavan-3-ol glycoside from Celastrus orbiculatus.
    Hwang BY, Kim HS, Lee JH, Hong YS, Ro JS, Lee KS, Lee JJ.
    J Nat Prod; 2001 Jan 22; 64(1):82-4. PubMed ID: 11170672
    [Abstract] [Full Text] [Related]

  • 37. Free radical scavenging by bifemelane hydrochloride and its major metabolites.
    Liu J, Ogawa N, Wang X, Mori A.
    Arch Int Pharmacodyn Ther; 1991 Jan 22; 311():177-87. PubMed ID: 1665058
    [Abstract] [Full Text] [Related]

  • 38. Alaternin, cassiaside and rubrofusarin gentiobioside, radical scavenging principles from the seeds of Cassia tora on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical.
    Choi JS, Lee HJ, Kang SS.
    Arch Pharm Res; 1994 Dec 22; 17(6):462-6. PubMed ID: 10319159
    [Abstract] [Full Text] [Related]

  • 39. Dynamic behavior of tea catechins interacting with lipid membranes as determined by NMR spectroscopy.
    Uekusa Y, Kamihira M, Nakayama T.
    J Agric Food Chem; 2007 Nov 28; 55(24):9986-92. PubMed ID: 17966973
    [Abstract] [Full Text] [Related]

  • 40. Studies on the 1,1-diphenyl-2-picrylhydrazyl radical scavenging mechanism for a 2-pyrone compound.
    Abe N, Nemoto A, Tsuchiya Y, Hojo H, Hirota A.
    Biosci Biotechnol Biochem; 2000 Feb 28; 64(2):306-13. PubMed ID: 10737186
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 19.