These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
143 related items for PubMed ID: 10620202
1. Role of protein kinase C in angiotensin II-induced constriction of renal microvessels. Nagahama T, Hayashi K, Ozawa Y, Takenaka T, Saruta T. Kidney Int; 2000 Jan; 57(1):215-23. PubMed ID: 10620202 [Abstract] [Full Text] [Related]
2. Role of protein kinase C in Ca channel blocker-induced renal arteriolar dilation in spontaneously hypertensive rats--studies in the isolated perfused hydronephrotic kidney. Hayashi K, Wakino S, Ozawa Y, Homma K, Kanda T, Okubo K, Takamatsu I, Tatematsu S, Kumagai H, Saruta T. Keio J Med; 2005 Jun; 54(2):102-8. PubMed ID: 16077260 [Abstract] [Full Text] [Related]
3. Cellular mechanism for mibefradil-induced vasodilation of renal microcirculation: studies in the isolated perfused hydronephrotic kidney. Hayashi K, Ozawa Y, Wakino S, Kanda T, Homma K, Takamatsu I, Tatematsu S, Saruta T. J Cardiovasc Pharmacol; 2003 Dec; 42(6):697-702. PubMed ID: 14639089 [Abstract] [Full Text] [Related]
4. Vessel- and vasoconstrictor-dependent role of rho/rho-kinase in renal microvascular tone. Nakamura A, Hayashi K, Ozawa Y, Fujiwara K, Okubo K, Kanda T, Wakino S, Saruta T. J Vasc Res; 2003 Dec; 40(3):244-51. PubMed ID: 12902637 [Abstract] [Full Text] [Related]
6. Transient receptor potential channels in rat renal microcirculation: actions of angiotensin II. Takenaka T, Suzuki H, Okada H, Inoue T, Kanno Y, Ozawa Y, Hayashi K, Saruta T. Kidney Int; 2002 Aug; 62(2):558-65. PubMed ID: 12110018 [Abstract] [Full Text] [Related]
7. Effect of T-type selective calcium antagonist on renal microcirculation: studies in the isolated perfused hydronephrotic kidney. Ozawa Y, Hayashi K, Nagahama T, Fujiwara K, Saruta T. Hypertension; 2001 Sep; 38(3):343-7. PubMed ID: 11566902 [Abstract] [Full Text] [Related]
8. Protein kinase C and calcium channel activation as determinants of renal vasoconstriction by angiotensin II and endothelin. Takenaka T, Forster H, Epstein M. Circ Res; 1993 Oct; 73(4):743-50. PubMed ID: 8396506 [Abstract] [Full Text] [Related]
9. Cellular mechanisms mediating rat renal microvascular constriction by angiotensin II. Takenaka T, Suzuki H, Fujiwara K, Kanno Y, Ohno Y, Hayashi K, Nagahama T, Saruta T. J Clin Invest; 1997 Oct 15; 100(8):2107-14. PubMed ID: 9329977 [Abstract] [Full Text] [Related]
10. Alterations in basal protein kinase C activity modulate renal afferent arteriolar myogenic reactivity. Kirton CA, Loutzenhiser R. Am J Physiol; 1998 Aug 15; 275(2):H467-75. PubMed ID: 9683434 [Abstract] [Full Text] [Related]
11. Role of calcium and protein kinase C in the activation of phospholipase D by angiotensin II in vascular smooth muscle cells. Freeman EJ, Chisolm GM, Tallant EA. Arch Biochem Biophys; 1995 May 10; 319(1):84-92. PubMed ID: 7771808 [Abstract] [Full Text] [Related]
12. Distinct modulation of superficial and juxtamedullary arterioles by prostaglandin in vivo. Matsuda H, Hayashi K, Arakawa K, Kubota E, Honda M, Tokuyama H, Suzuki H, Yamamoto T, Kajiya F, Saruta T. Hypertens Res; 2002 Nov 10; 25(6):901-10. PubMed ID: 12484515 [Abstract] [Full Text] [Related]
13. Angiotensin II type 1 receptor activation modulates L- and T-type calcium channel activity through distinct mechanisms in bovine adrenal glomerulosa cells. Maturana AD, Burnay MM, Capponi AM, Vallotton MB, Rossier MF. J Recept Signal Transduct Res; 1999 Nov 10; 19(1-4):509-20. PubMed ID: 10071781 [Abstract] [Full Text] [Related]
14. Cross-talk between receptor-mediated phospholipase C-beta and D via protein kinase C as intracellular signal possibly leading to hypertrophy in serum-free cultured cardiomyocytes. Eskildsen-Helmond YE, Bezstarosti K, Dekkers DH, van Heugten HA, Lamers JM. J Mol Cell Cardiol; 1997 Sep 10; 29(9):2545-59. PubMed ID: 9299377 [Abstract] [Full Text] [Related]
15. Angiotensin II induces carbon monoxide production in the perfused kidney: relationship to protein kinase C activation. Li P, Jiang H, Yang L, Quan S, Dinocca S, Rodriguez F, Abraham NG, Nasjletti A. Am J Physiol Renal Physiol; 2004 Nov 10; 287(5):F914-20. PubMed ID: 15251861 [Abstract] [Full Text] [Related]
16. Angiotensin II activates two cation conductances with distinct TRPC1 and TRPC6 channel properties in rabbit mesenteric artery myocytes. Saleh SN, Albert AP, Peppiatt CM, Large WA. J Physiol; 2006 Dec 01; 577(Pt 2):479-95. PubMed ID: 16973707 [Abstract] [Full Text] [Related]
17. Angiotensin II activates mitogen-activated protein kinase via protein kinase C and Ras/Raf-1 kinase in bovine adrenal glomerulosa cells. Tian Y, Smith RD, Balla T, Catt KJ. Endocrinology; 1998 Apr 01; 139(4):1801-9. PubMed ID: 9528965 [Abstract] [Full Text] [Related]
18. Calcium entry and mobilization signaling pathways in ANG II-induced renal vasoconstriction in vivo. Ruan X, Arendshorst WJ. Am J Physiol; 1996 Mar 01; 270(3 Pt 2):F398-405. PubMed ID: 8780240 [Abstract] [Full Text] [Related]
19. Afferent and efferent arteriolar vasoconstriction to angiotensin II and norepinephrine involves release of Ca2+ from intracellular stores. Inscho EW, Imig JD, Cook AK. Hypertension; 1997 Jan 01; 29(1 Pt 2):222-7. PubMed ID: 9039106 [Abstract] [Full Text] [Related]
20. Involvement of protein kianse C and Ca2+ in angiotensin II-induced mitogenesis of cardiac fibroblasts. Booz GW, Dostal DE, Singer HA, Baker KM. Am J Physiol; 1994 Nov 01; 267(5 Pt 1):C1308-18. PubMed ID: 7977694 [Abstract] [Full Text] [Related] Page: [Next] [New Search]