These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


184 related items for PubMed ID: 10634708

  • 1. Degradation of cyanogenic glycosides by Lactobacillus plantarum strains from spontaneous cassava fermentation and other microorganisms.
    Lei V, Amoa-Awua WK, Brimer L.
    Int J Food Microbiol; 1999 Dec 15; 53(2-3):169-84. PubMed ID: 10634708
    [Abstract] [Full Text] [Related]

  • 2. Metabolism of cyanogenic glycosides: A review.
    Cressey P, Reeve J.
    Food Chem Toxicol; 2019 Mar 15; 125():225-232. PubMed ID: 30615957
    [Abstract] [Full Text] [Related]

  • 3. Characterization of amygdalin-degrading Lactobacillus species.
    Menon R, Munjal N, Sturino JM.
    J Appl Microbiol; 2015 Feb 15; 118(2):443-53. PubMed ID: 25421573
    [Abstract] [Full Text] [Related]

  • 4. Screening for Bacillus subtilis group isolates that degrade cyanogens at pH 4.5-5.0.
    Abban S, Brimer L, Abdelgadir WS, Jakobsen M, Thorsen L.
    Int J Food Microbiol; 2013 Jan 15; 161(1):31-5. PubMed ID: 23261810
    [Abstract] [Full Text] [Related]

  • 5. Souring and breakdown of cyanogenic glucosides during the processing of cassava into akyeke.
    Obilie EM, Tano-Debrah K, Amoa-Awua WK.
    Int J Food Microbiol; 2004 May 15; 93(1):115-21. PubMed ID: 15135588
    [Abstract] [Full Text] [Related]

  • 6. Diversity and technological properties of predominant lactic acid bacteria from fermented cassava used for the preparation of Gari, a traditional African food.
    Kostinek M, Specht I, Edward VA, Schillinger U, Hertel C, Holzapfel WH, Franz CM.
    Syst Appl Microbiol; 2005 Aug 15; 28(6):527-40. PubMed ID: 16104351
    [Abstract] [Full Text] [Related]

  • 7. Two-step hydrolysis of amygdalin in molds.
    Brimer L, Cicalini AR, Federici F, Nout RM, Petruccioli M, Pulci V.
    Riv Biol; 1996 Aug 15; 89(3):493-6. PubMed ID: 9122587
    [Abstract] [Full Text] [Related]

  • 8. The contribution of moulds and yeasts to the fermentation of 'agbelima' cassava dough.
    Amoa-Awua WK, Frisvad JC, Sefa-Dedeh S, Jakobsen M.
    J Appl Microbiol; 1997 Sep 15; 83(3):288-96. PubMed ID: 9351208
    [Abstract] [Full Text] [Related]

  • 9. Engineering cyanogen synthesis and turnover in cassava (Manihot esculenta).
    Siritunga D, Sayre R.
    Plant Mol Biol; 2004 Nov 15; 56(4):661-9. PubMed ID: 15630626
    [Abstract] [Full Text] [Related]

  • 10. Differential effects on the cyanogenic glycoside content of fermenting cassava root pulp by beta-glucosidase and microbial activities.
    Maduagwu EN.
    Toxicol Lett; 1983 Mar 15; 15(4):335-9. PubMed ID: 6404010
    [Abstract] [Full Text] [Related]

  • 11. Comparative metabolism of linamarin and amygdalin in hamsters.
    Frakes RA, Sharma RP, Willhite CC.
    Food Chem Toxicol; 1986 May 15; 24(5):417-20. PubMed ID: 3744195
    [Abstract] [Full Text] [Related]

  • 12. Amygdalin degradation by Mucor circinelloides and Penicillium aurantiogriseum: mechanisms of hydrolysis.
    Brimer L, Cicalini AR, Federici F, Petruccioli M.
    Arch Microbiol; 1998 Feb 15; 169(2):106-12. PubMed ID: 9446681
    [Abstract] [Full Text] [Related]

  • 13. Characteristics and significance of yeasts' involvement in cassava fermentation for 'fufu' production.
    Oyewole OB.
    Int J Food Microbiol; 2001 May 10; 65(3):213-8. PubMed ID: 11393690
    [Abstract] [Full Text] [Related]

  • 14. Contribution of selected fungi to the reduction of cyanogen levels during solid substrate fermentation of cassava.
    Essers AJ, Jurgens CM, Nout MJ.
    Int J Food Microbiol; 1995 Jul 10; 26(2):251-7. PubMed ID: 7577362
    [Abstract] [Full Text] [Related]

  • 15. A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species.
    Pičmanová M, Neilson EH, Motawia MS, Olsen CE, Agerbirk N, Gray CJ, Flitsch S, Meier S, Silvestro D, Jørgensen K, Sánchez-Pérez R, Møller BL, Bjarnholt N.
    Biochem J; 2015 Aug 01; 469(3):375-89. PubMed ID: 26205491
    [Abstract] [Full Text] [Related]

  • 16. Factors that determine rates of cyanogenesis in bovine ruminal fluid in vitro.
    Majak W, McDiarmid RE, Hall JW, Cheng KJ.
    J Anim Sci; 1990 Jun 01; 68(6):1648-55. PubMed ID: 2166729
    [Abstract] [Full Text] [Related]

  • 17. Amygdalin (Laetrile) and prunasin beta-glucosidases: distribution in germ-free rat and in human tumor tissue.
    Newmark J, Brady RO, Grimley PM, Gal AE, Waller SG, Thistlethwaite JR.
    Proc Natl Acad Sci U S A; 1981 Oct 01; 78(10):6513-6. PubMed ID: 6796962
    [Abstract] [Full Text] [Related]

  • 18. Characterisation and biochemical properties of predominant lactic acid bacteria from fermenting cassava for selection as starter cultures.
    Kostinek M, Specht I, Edward VA, Pinto C, Egounlety M, Sossa C, Mbugua S, Dortu C, Thonart P, Taljaard L, Mengu M, Franz CM, Holzapfel WH.
    Int J Food Microbiol; 2007 Mar 20; 114(3):342-51. PubMed ID: 17188771
    [Abstract] [Full Text] [Related]

  • 19. Sugar uptake and involved enzymatic activities by yeasts and lactic acid bacteria: their relationship with breadmaking quality.
    Antuña B, Martínez-Anaya MA.
    Int J Food Microbiol; 1993 May 20; 18(3):191-200. PubMed ID: 8494688
    [Abstract] [Full Text] [Related]

  • 20. The use of a starter culture in the fermentation of cassava for the production of "kivunde", a traditional Tanzanian food product.
    Kimaryo VM, Massawe GA, Olasupo NA, Holzapfel WH.
    Int J Food Microbiol; 2000 Jun 01; 56(2-3):179-90. PubMed ID: 10857544
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.