These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
294 related items for PubMed ID: 10634888
21. Fast and slow locomotor burst generation in the hemispinal cord of the lamprey. Cangiano L, Grillner S. J Neurophysiol; 2003 Jun; 89(6):2931-42. PubMed ID: 12611971 [Abstract] [Full Text] [Related]
22. Origin of phasic synaptic inhibition in myotomal motoneurons during fictive locomotion in the lamprey. Wallén P, Shupliakov O, Hill RH. Exp Brain Res; 1993 Jun; 96(2):194-202. PubMed ID: 8270016 [Abstract] [Full Text] [Related]
23. Spino-bulbar neurons convey information to the brainstem about different phases of the locomotor cycle in the lamprey. Vinay L, Grillner S. Brain Res; 1992 Jun 05; 582(1):134-8. PubMed ID: 1323370 [Abstract] [Full Text] [Related]
24. Rostrocaudal distribution of 5-HT innervation in the lamprey spinal cord and differential effects of 5-HT on fictive locomotion. Zhang W, Pombal MA, el Manira A, Grillner S. J Comp Neurol; 1996 Oct 14; 374(2):278-90. PubMed ID: 8906499 [Abstract] [Full Text] [Related]
25. Elimination of Left-Right Reciprocal Coupling in the Adult Lamprey Spinal Cord Abolishes the Generation of Locomotor Activity. Messina JA, St Paul A, Hargis S, Thompson WE, McClellan AD. Front Neural Circuits; 2017 Oct 14; 11():89. PubMed ID: 29225569 [Abstract] [Full Text] [Related]
26. Effects of oscillator frequency on phase-locking in the lamprey central pattern generator. Cohen AH. J Neurosci Methods; 1987 Oct 14; 21(2-4):113-25. PubMed ID: 2890796 [Abstract] [Full Text] [Related]
27. Impact of movement and movement-related feedback on the lamprey central pattern generator for locomotion. Guan L, Kiemel T, Cohen AH. J Exp Biol; 2001 Jul 14; 204(Pt 13):2361-70. PubMed ID: 11507118 [Abstract] [Full Text] [Related]
28. Coupling of spinal locomotor networks in larval lamprey revealed by receptor blockers for inhibitory amino acids: neurophysiology and computer modeling. Hagevik A, McClellan AD. J Neurophysiol; 1994 Oct 14; 72(4):1810-29. PubMed ID: 7823103 [Abstract] [Full Text] [Related]
29. Intersegmental phase lags in the lamprey spinal cord: experimental confirmation of the existence of a boundary region. Williams TL, Sigvardt KA. J Comput Neurosci; 1994 Jun 14; 1(1-2):61-7. PubMed ID: 8792225 [Abstract] [Full Text] [Related]
30. Central modulation of stretch receptor neurons during fictive locomotion in lamprey. Vinay L, Barthe JY, Grillner S. J Neurophysiol; 1996 Aug 14; 76(2):1224-35. PubMed ID: 8871232 [Abstract] [Full Text] [Related]
31. Disruption of left-right reciprocal coupling in the spinal cord of larval lamprey abolishes brain-initiated locomotor activity. Jackson AW, Horinek DF, Boyd MR, McClellan AD. J Neurophysiol; 2005 Sep 14; 94(3):2031-44. PubMed ID: 16000521 [Abstract] [Full Text] [Related]
32. The role of spinal cord inputs in modulating the activity of reticulospinal neurons during fictive locomotion in the lamprey. Dubuc R, Grillner S. Brain Res; 1989 Mar 27; 483(1):196-200. PubMed ID: 2650805 [Abstract] [Full Text] [Related]
33. Variability analyses suggest that supraspino-spinal interactions provide dynamic stability in motor control. Wang H, Jung R. Brain Res; 2002 Mar 15; 930(1-2):83-100. PubMed ID: 11879799 [Abstract] [Full Text] [Related]
34. Forcing of coupled nonlinear oscillators: studies of intersegmental coordination in the lamprey locomotor central pattern generator. Williams TL, Sigvardt KA, Kopell N, Ermentrout GB, Remler MP. J Neurophysiol; 1990 Sep 15; 64(3):862-71. PubMed ID: 2230930 [Abstract] [Full Text] [Related]
35. Spontaneous and locomotor-related GABAergic input onto primary afferents in the neonatal rat. Fellippa-Marques S, Vinay L, Clarac F. Eur J Neurosci; 2000 Jan 15; 12(1):155-64. PubMed ID: 10651870 [Abstract] [Full Text] [Related]
36. Calcium-dependent potassium channels play a critical role for burst termination in the locomotor network in lamprey. el Manira A, Tegnér J, Grillner S. J Neurophysiol; 1994 Oct 15; 72(4):1852-61. PubMed ID: 7823105 [Abstract] [Full Text] [Related]
37. Modelling of intersegmental coordination in the lamprey central pattern generator for locomotion. Cohen AH, Ermentrout GB, Kiemel T, Kopell N, Sigvardt KA, Williams TL. Trends Neurosci; 1992 Nov 15; 15(11):434-8. PubMed ID: 1281350 [Abstract] [Full Text] [Related]
38. Functional regeneration following spinal transection demonstrated in the isolated spinal cord of the larval sea lamprey. Cohen AH, Mackler SA, Selzer ME. Proc Natl Acad Sci U S A; 1986 Apr 15; 83(8):2763-6. PubMed ID: 3458237 [Abstract] [Full Text] [Related]
39. Increased variability in motor output with brain-spinal cord interaction. Jung R, Jung J, Losch B. Biomed Sci Instrum; 1997 Apr 15; 34():107-12. PubMed ID: 9603022 [Abstract] [Full Text] [Related]
40. Cholinergic modulation of the locomotor network in the lamprey spinal cord. Quinlan KA, Placas PG, Buchanan JT. J Neurophysiol; 2004 Sep 15; 92(3):1536-48. PubMed ID: 15152024 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]