These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


187 related items for PubMed ID: 10645970

  • 1. MK801 increases retinotectal arbor size in developing zebrafish without affecting kinetics of branch elimination and addition.
    Schmidt JT, Buzzard M, Borress R, Dhillon S.
    J Neurobiol; 2000 Feb 15; 42(3):303-14. PubMed ID: 10645970
    [Abstract] [Full Text] [Related]

  • 2. Presynaptic protein kinase C controls maturation and branch dynamics of developing retinotectal arbors: possible role in activity-driven sharpening.
    Schmidt JT, Fleming MR, Leu B.
    J Neurobiol; 2004 Feb 15; 58(3):328-40. PubMed ID: 14750146
    [Abstract] [Full Text] [Related]

  • 3. Activity-driven sharpening of the retinotectal projection in goldfish: development under stroboscopic illumination prevents sharpening.
    Schmidt JT, Buzzard M.
    J Neurobiol; 1993 Mar 15; 24(3):384-99. PubMed ID: 7684064
    [Abstract] [Full Text] [Related]

  • 4. Activity-driven sharpening of the regenerating retinotectal projection: effects of blocking or synchronizing activity on the morphology of individual regenerating arbors.
    Schmidt JT, Buzzard M.
    J Neurobiol; 1990 Sep 15; 21(6):900-17. PubMed ID: 1706412
    [Abstract] [Full Text] [Related]

  • 5. NMDA receptor agonist and antagonists alter retinal ganglion cell arbor structure in the developing frog retinotectal projection.
    Cline HT, Constantine-Paton M.
    J Neurosci; 1990 Apr 15; 10(4):1197-216. PubMed ID: 2158526
    [Abstract] [Full Text] [Related]

  • 6. GAP43 phosphorylation is critical for growth and branching of retinotectal arbors in zebrafish.
    Leu B, Koch E, Schmidt JT.
    Dev Neurobiol; 2010 Nov 15; 70(13):897-911. PubMed ID: 20669323
    [Abstract] [Full Text] [Related]

  • 7. Nicotine exposure refines visual map topography through an NMDA receptor-mediated pathway.
    Yan X, Zhao B, Butt CM, Debski EA.
    Eur J Neurosci; 2006 Dec 15; 24(11):3026-42. PubMed ID: 17156364
    [Abstract] [Full Text] [Related]

  • 8. A role for the polarity complex and PI3 kinase in branch formation within retinotectal arbors of zebrafish.
    Schmidt JT, Mariconda L, Morillo F, Apraku E.
    Dev Neurobiol; 2014 Jun 15; 74(6):591-601. PubMed ID: 24218155
    [Abstract] [Full Text] [Related]

  • 9. Synaptic activity and activity-dependent competition regulates axon arbor maturation, growth arrest, and territory in the retinotectal projection.
    Ben Fredj N, Hammond S, Otsuna H, Chien CB, Burrone J, Meyer MP.
    J Neurosci; 2010 Aug 11; 30(32):10939-51. PubMed ID: 20702722
    [Abstract] [Full Text] [Related]

  • 10. Staining of regenerated optic arbors in goldfish tectum: progressive changes in immature arbors and a comparison of mature regenerated arbors with normal arbors.
    Schmidt JT, Turcotte JC, Buzzard M, Tieman DG.
    J Comp Neurol; 1988 Mar 22; 269(4):565-91. PubMed ID: 3372728
    [Abstract] [Full Text] [Related]

  • 11. Growth behavior of retinotectal axons in live zebrafish embryos under TTX-induced neural impulse blockade.
    Kaethner RJ, Stuermer CA.
    J Neurobiol; 1994 Jul 22; 25(7):781-96. PubMed ID: 8089656
    [Abstract] [Full Text] [Related]

  • 12. Topography and axon arbor architecture in the visual callosal pathway: effects of deafferentation and blockade of N-methyl-D-aspartate receptors.
    Olavarría JF, Laing R, Hiroi R, Lasiene J.
    Biol Res; 2008 Jul 22; 41(4):413-24. PubMed ID: 19621122
    [Abstract] [Full Text] [Related]

  • 13. Changes in retinal arbors in compressed projections to half tecta in goldfish.
    Schmidt J, Coen T.
    J Neurobiol; 1995 Dec 22; 28(4):409-18. PubMed ID: 8592102
    [Abstract] [Full Text] [Related]

  • 14. BDNF stabilizes synapses and maintains the structural complexity of optic axons in vivo.
    Hu B, Nikolakopoulou AM, Cohen-Cory S.
    Development; 2005 Oct 22; 132(19):4285-98. PubMed ID: 16141221
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. NMDA receptor activity stabilizes presynaptic retinotectal axons and postsynaptic optic tectal cell dendrites in vivo.
    Rajan I, Witte S, Cline HT.
    J Neurobiol; 1999 Feb 15; 38(3):357-68. PubMed ID: 10022578
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Arachidonic acid as a retrograde signal controlling growth and dynamics of retinotectal arbors.
    Leu BH, Schmidt JT.
    Dev Neurobiol; 2008 Jan 15; 68(1):18-30. PubMed ID: 17918241
    [Abstract] [Full Text] [Related]

  • 19. Long-term potentiation and activity-dependent retinotopic sharpening in the regenerating retinotectal projection of goldfish: common sensitive period and sensitivity to NMDA blockers.
    Schmidt JT.
    J Neurosci; 1990 Jan 15; 10(1):233-46. PubMed ID: 2153773
    [Abstract] [Full Text] [Related]

  • 20. Reversal and stabilization of synaptic modifications in a developing visual system.
    Zhou Q, Tao HW, Poo MM.
    Science; 2003 Jun 20; 300(5627):1953-7. PubMed ID: 12817152
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.