These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


410 related items for PubMed ID: 10652989

  • 1. Effects of eicosapentaenoic acid and docosahexaenoic acid on plasma membrane fluidity of aortic endothelial cells.
    Hashimoto M, Hossain S, Yamasaki H, Yazawa K, Masumura S.
    Lipids; 1999 Dec; 34(12):1297-304. PubMed ID: 10652989
    [Abstract] [Full Text] [Related]

  • 2. Docosahexaenoic acid but not eicosapentaenoic acid withstands dietary cholesterol-induced decreases in platelet membrane fluidity.
    Hashimoto M, Hossain S, Shido O.
    Mol Cell Biochem; 2006 Dec; 293(1-2):1-8. PubMed ID: 16933035
    [Abstract] [Full Text] [Related]

  • 3. Membrane fluidity and fatty acid metabolism in kidney cells from rats fed purified eicosapentaenoic acid or purified docosahexaenoic acid.
    Hagve TA, Woldseth B, Brox J, Narce M, Poisson JP.
    Scand J Clin Lab Invest; 1998 May; 58(3):187-94. PubMed ID: 9670342
    [Abstract] [Full Text] [Related]

  • 4. Eicosapentaenoic acid reduces membrane fluidity, inhibits cholesterol domain formation, and normalizes bilayer width in atherosclerotic-like model membranes.
    Mason RP, Jacob RF, Shrivastava S, Sherratt SCR, Chattopadhyay A.
    Biochim Biophys Acta; 2016 Dec; 1858(12):3131-3140. PubMed ID: 27718370
    [Abstract] [Full Text] [Related]

  • 5. Differential effects of eicosapentaenoic acid and docosahexaenoic acid on human skin fibroblasts.
    Brown ER, Subbaiah PV.
    Lipids; 1994 Dec; 29(12):825-9. PubMed ID: 7854007
    [Abstract] [Full Text] [Related]

  • 6. Effect of aging on plasma membrane fluidity of rat aortic endothelial cells.
    Hashimoto M, Hossain S, Masumura S.
    Exp Gerontol; 1999 Aug; 34(5):687-98. PubMed ID: 10530793
    [Abstract] [Full Text] [Related]

  • 7. Effects of docosahexaenoic acid on annular lipid fluidity of the rat bile canalicular plasma membrane.
    Hashimoto M, Hossain MS, Shimada T, Yamasaki H, Fujii Y, Shido O.
    J Lipid Res; 2001 Jul; 42(7):1160-8. PubMed ID: 11441145
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Eicosapentaenoic acid, but not docosahexaenoic acid, increases mitochondrial fatty acid oxidation and upregulates 2,4-dienoyl-CoA reductase gene expression in rats.
    Willumsen N, Vaagenes H, Lie O, Rustan AC, Berge RK.
    Lipids; 1996 Jun; 31(6):579-92. PubMed ID: 8784738
    [Abstract] [Full Text] [Related]

  • 10. Docosahexaenoic acid-induced protective effect against impaired learning in amyloid beta-infused rats is associated with increased synaptosomal membrane fluidity.
    Hashimoto M, Hossain S, Shimada T, Shido O.
    Clin Exp Pharmacol Physiol; 2006 Oct; 33(10):934-9. PubMed ID: 17002670
    [Abstract] [Full Text] [Related]

  • 11. Termination of asynchronous contractile activity in rat atrial myocytes by n-3 polyunsaturated fatty acids.
    Jahangiri A, Leifert WR, Patten GS, McMurchie EJ.
    Mol Cell Biochem; 2000 Mar; 206(1-2):33-41. PubMed ID: 10839192
    [Abstract] [Full Text] [Related]

  • 12. Concentration-Dependent Effects of N-3 Long-Chain Fatty Acids on Na,K-ATPase Activity in Human Endothelial Cells.
    Cazzola R, Della Porta M, Castiglioni S, Pinotti L, Maier JAM, Cestaro B.
    Molecules; 2019 Dec 28; 25(1):. PubMed ID: 31905689
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Docosahexaenoic acid and eicosapentaenoic acid-enriched phosphatidylcholine liposomes enhance the permeability, transportation and uptake of phospholipids in Caco-2 cells.
    Hossain Z, Kurihara H, Hosokawa M, Takahashi K.
    Mol Cell Biochem; 2006 Apr 28; 285(1-2):155-63. PubMed ID: 16477371
    [Abstract] [Full Text] [Related]

  • 15. Effect of docosahexaenoic acid and eicosapentaenoic acid in the phospholipids of rat heart muscle cells on adrenoceptor responsiveness and mechanism.
    Grynberg A, Fournier A, Sergiel JP, Athias P.
    J Mol Cell Cardiol; 1995 Nov 28; 27(11):2507-20. PubMed ID: 8596201
    [Abstract] [Full Text] [Related]

  • 16. Properties of a phosphatidylcholine derivative of diphenyl hexatriene (DPH-PC) in lymphocyte membranes. A comparison with DPH and the cationic derivative TMA-DPH using static and dynamic fluorescence.
    Ferretti G, Tangorra A, Zolese G, Curatola G.
    Membr Biochem; 1993 Nov 28; 10(1):17-27. PubMed ID: 8510559
    [Abstract] [Full Text] [Related]

  • 17. Low-dose eicosapentaenoic or docosahexaenoic acid administration modifies fatty acid composition and does not affect susceptibility to oxidative stress in rat erythrocytes and tissues.
    Calviello G, Palozza P, Franceschelli P, Bartoli GM.
    Lipids; 1997 Oct 28; 32(10):1075-83. PubMed ID: 9358434
    [Abstract] [Full Text] [Related]

  • 18. Developmental changes in synaptic membrane fluidity: a comparison of 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-[4-(trimethylamino)phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH).
    Hitzemann RJ, Harris RA.
    Brain Res; 1984 May 28; 316(1):113-20. PubMed ID: 6733531
    [Abstract] [Full Text] [Related]

  • 19. Change of synaptic membrane lipid composition and fluidity by chronic administration of lithium.
    López-Corcuera B, Giménez C, Aragón C.
    Biochim Biophys Acta; 1988 Apr 22; 939(3):467-75. PubMed ID: 2833309
    [Abstract] [Full Text] [Related]

  • 20. Highly purified eicosapentaenoic acid and docosahexaenoic acid in humans have similar triacylglycerol-lowering effects but divergent effects on serum fatty acids.
    Grimsgaard S, Bonaa KH, Hansen JB, Nordøy A.
    Am J Clin Nutr; 1997 Sep 22; 66(3):649-59. PubMed ID: 9280188
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.