These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


305 related items for PubMed ID: 10653795

  • 1. Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes.
    Holopainen JM, Angelova MI, Kinnunen PK.
    Biophys J; 2000 Feb; 78(2):830-8. PubMed ID: 10653795
    [Abstract] [Full Text] [Related]

  • 2. Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane.
    Holopainen JM, Subramanian M, Kinnunen PK.
    Biochemistry; 1998 Dec 15; 37(50):17562-70. PubMed ID: 9860872
    [Abstract] [Full Text] [Related]

  • 3. Sphingomyelinase activity associated with human plasma low density lipoprotein.
    Holopainen JM, Medina OP, Metso AJ, Kinnunen PK.
    J Biol Chem; 2000 Jun 02; 275(22):16484-9. PubMed ID: 10828058
    [Abstract] [Full Text] [Related]

  • 4. Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers.
    Sot J, Bagatolli LA, Goñi FM, Alonso A.
    Biophys J; 2006 Feb 01; 90(3):903-14. PubMed ID: 16284266
    [Abstract] [Full Text] [Related]

  • 5. Asymmetric addition of ceramides but not dihydroceramides promotes transbilayer (flip-flop) lipid motion in membranes.
    Contreras FX, Basañez G, Alonso A, Herrmann A, Goñi FM.
    Biophys J; 2005 Jan 01; 88(1):348-59. PubMed ID: 15465865
    [Abstract] [Full Text] [Related]

  • 6. Rapid phase change of lipid microdomains in giant vesicles induced by conversion of sphingomyelin to ceramide.
    Taniguchi Y, Ohba T, Miyata H, Ohki K.
    Biochim Biophys Acta; 2006 Feb 01; 1758(2):145-53. PubMed ID: 16580624
    [Abstract] [Full Text] [Related]

  • 7. Membrane microdomains: role of ceramides in the maintenance of their structure and functions.
    Staneva G, Momchilova A, Wolf C, Quinn PJ, Koumanov K.
    Biochim Biophys Acta; 2009 Mar 01; 1788(3):666-75. PubMed ID: 19059203
    [Abstract] [Full Text] [Related]

  • 8. Shape transitions and lattice structuring of ceramide-enriched domains generated by sphingomyelinase in lipid monolayers.
    Härtel S, Fanani ML, Maggio B.
    Biophys J; 2005 Jan 01; 88(1):287-304. PubMed ID: 15489298
    [Abstract] [Full Text] [Related]

  • 9. A combined fluorescence spectroscopy, confocal and 2-photon microscopy approach to re-evaluate the properties of sphingolipid domains.
    Pinto SN, Fernandes F, Fedorov A, Futerman AH, Silva LC, Prieto M.
    Biochim Biophys Acta; 2013 Sep 01; 1828(9):2099-110. PubMed ID: 23702462
    [Abstract] [Full Text] [Related]

  • 10. Cholesterol displacement by ceramide in sphingomyelin-containing liquid-ordered domains, and generation of gel regions in giant lipidic vesicles.
    Sot J, Ibarguren M, Busto JV, Montes LR, Goñi FM, Alonso A.
    FEBS Lett; 2008 Sep 22; 582(21-22):3230-6. PubMed ID: 18755187
    [Abstract] [Full Text] [Related]

  • 11. Sphingomyelinase generation of ceramide promotes clustering of nanoscale domains in supported bilayer membranes.
    Ira, Johnston LJ.
    Biochim Biophys Acta; 2008 Jan 22; 1778(1):185-97. PubMed ID: 17988649
    [Abstract] [Full Text] [Related]

  • 12. Surface tension induced by sphingomyelin to ceramide conversion in lipid membranes.
    López-Montero I, Vélez M, Devaux PF.
    Biochim Biophys Acta; 2007 Mar 22; 1768(3):553-61. PubMed ID: 17292325
    [Abstract] [Full Text] [Related]

  • 13. Ceramide-enriched membrane domains in red blood cells and the mechanism of sphingomyelinase-induced hot-cold hemolysis.
    Montes LR, López DJ, Sot J, Bagatolli LA, Stonehouse MJ, Vasil ML, Wu BX, Hannun YA, Goñi FM, Alonso A.
    Biochemistry; 2008 Oct 28; 47(43):11222-30. PubMed ID: 18826261
    [Abstract] [Full Text] [Related]

  • 14. Bidirectional control of sphingomyelinase activity and surface topography in lipid monolayers.
    Fanani ML, Härtel S, Oliveira RG, Maggio B.
    Biophys J; 2002 Dec 28; 83(6):3416-24. PubMed ID: 12496108
    [Abstract] [Full Text] [Related]

  • 15. Observation of topical catalysis by sphingomyelinase coupled to microspheres.
    Nurminen TA, Holopainen JM, Zhao H, Kinnunen PK.
    J Am Chem Soc; 2002 Oct 16; 124(41):12129-34. PubMed ID: 12371852
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Effect of ceramide on nonraft proteins.
    Pabst G, Boulgaropoulos B, Gander E, Sarangi BR, Amenitsch H, Raghunathan VA, Laggner P.
    J Membr Biol; 2009 Oct 16; 231(2-3):125-32. PubMed ID: 19882097
    [Abstract] [Full Text] [Related]

  • 19. Implication of sphingomyelin/ceramide molar ratio on the biological activity of sphingomyelinase.
    Boulgaropoulos B, Amenitsch H, Laggner P, Pabst G.
    Biophys J; 2010 Jul 21; 99(2):499-506. PubMed ID: 20643068
    [Abstract] [Full Text] [Related]

  • 20. Lateral Segregation of Palmitoyl Ceramide-1-Phosphate in Simple and Complex Bilayers.
    Al Sazzad MA, Yasuda T, Nyholm TKM, Slotte JP.
    Biophys J; 2019 Jul 09; 117(1):36-45. PubMed ID: 31133285
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.