These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


204 related items for PubMed ID: 10655106

  • 1. Genetic correction of sickle cell disease: insights using transgenic mouse models.
    Blouin MJ, Beauchemin H, Wright A, De Paepe M, Sorette M, Bleau AM, Nakamoto B, Ou CN, Stamatoyannopoulos G, Trudel M.
    Nat Med; 2000 Feb; 6(2):177-82. PubMed ID: 10655106
    [Abstract] [Full Text] [Related]

  • 2. Mouse models of sickle cell disease.
    Beuzard Y.
    Transfus Clin Biol; 2008 Feb; 15(1-2):7-11. PubMed ID: 18502677
    [Abstract] [Full Text] [Related]

  • 3. Correction of sickle cell disease in transgenic mouse models by gene therapy.
    Pawliuk R, Westerman KA, Fabry ME, Payen E, Tighe R, Bouhassira EE, Acharya SA, Ellis J, London IM, Eaves CJ, Humphries RK, Beuzard Y, Nagel RL, Leboulch P.
    Science; 2001 Dec 14; 294(5550):2368-71. PubMed ID: 11743206
    [Abstract] [Full Text] [Related]

  • 4. High oxygen environment during pregnancy rescues sickle cell anemia mice from prenatal death.
    Ye L, Chang JC, Lu R, Kan YW.
    Blood Cells Mol Dis; 2008 Dec 14; 41(1):67-72. PubMed ID: 18207438
    [Abstract] [Full Text] [Related]

  • 5. Anti-beta s-ribozyme reduces beta s mRNA levels in transgenic mice: potential application to the gene therapy of sickle cell anemia.
    Alami R, Gilman JG, Feng YQ, Marmorato A, Rochlin I, Suzuka SM, Fabry ME, Nagel RL, Bouhassira EE.
    Blood Cells Mol Dis; 1999 Apr 14; 25(2):110-9. PubMed ID: 10389593
    [Abstract] [Full Text] [Related]

  • 6. Sickle cell anemia: targeting the role of fetal hemoglobin in therapy.
    Coleman E, Inusa B.
    Clin Pediatr (Phila); 2007 Jun 14; 46(5):386-91. PubMed ID: 17556734
    [Abstract] [Full Text] [Related]

  • 7. Successful correction of murine sickle cell disease with reduced stem cell requirements reinforced by fractionated marrow infusions.
    Felfly H, Trudel M.
    Br J Haematol; 2010 Feb 14; 148(4):646-58. PubMed ID: 19930185
    [Abstract] [Full Text] [Related]

  • 8. A transgenic mouse model of sickle cell disorder.
    Greaves DR, Fraser P, Vidal MA, Hedges MJ, Ropers D, Luzzatto L, Grosveld F.
    Nature; 1990 Jan 11; 343(6254):183-5. PubMed ID: 2296310
    [Abstract] [Full Text] [Related]

  • 9. The first steps on the gene therapy pathway to anti-sickling success.
    Karlsson S.
    Nat Med; 2000 Feb 11; 6(2):139-40. PubMed ID: 10655097
    [No Abstract] [Full Text] [Related]

  • 10. [Genetic modifiers of homozygous sickle cell disease].
    Hartmann K, Kulozik AE.
    Klin Padiatr; 2006 Feb 11; 218(3):170-3. PubMed ID: 16688674
    [Abstract] [Full Text] [Related]

  • 11. New advances in the pathophysiology and management of sickle cell disease.
    Shafer FE, Vichinsky E.
    Curr Opin Hematol; 1994 Mar 11; 1(2):125-35. PubMed ID: 9371271
    [Abstract] [Full Text] [Related]

  • 12. Fetal hemoglobin in sickle cell anemia: Bayesian modeling of genetic associations.
    Sebastiani P, Wang L, Nolan VG, Melista E, Ma Q, Baldwin CT, Steinberg MH.
    Am J Hematol; 2008 Mar 11; 83(3):189-95. PubMed ID: 17918249
    [Abstract] [Full Text] [Related]

  • 13. [Advances in sickle cell disease].
    de Montalembert M.
    Bull Acad Natl Med; 2008 Oct 11; 192(7):1375-81; discussion 1381. PubMed ID: 19445363
    [Abstract] [Full Text] [Related]

  • 14. Pathophysiology and therapy for haemoglobinopathies. Part I: sickle cell disease.
    Madigan C, Malik P.
    Expert Rev Mol Med; 2006 Apr 28; 8(9):1-23. PubMed ID: 16690007
    [Abstract] [Full Text] [Related]

  • 15. Concordant fetal hemoglobin response to hydroxyurea in siblings with sickle cell disease.
    Steinberg MH, Voskaridou E, Kutlar A, Loukopoulos D, Koshy M, Ballas SK, Castro O, Barton F.
    Am J Hematol; 2003 Feb 28; 72(2):121-6. PubMed ID: 12555216
    [Abstract] [Full Text] [Related]

  • 16. Fibrinogen deficiency, but not plasminogen deficiency, increases mortality synergistically in combination with sickle hemoglobin SAD in transgenic mice.
    Roszell NJ, Danton MJ, Jiang M, Witte D, Daugherty C, Grimes T, Girdler B, Anderson KP, Franco RS, Degen JL, Joiner CH.
    Am J Hematol; 2007 Dec 28; 82(12):1044-8. PubMed ID: 17722076
    [Abstract] [Full Text] [Related]

  • 17. Exciting new treatment approaches for pathyphysiologic mechanisms of sickle cell disease.
    Mankad VN.
    Pediatr Pathol Mol Med; 2001 Dec 28; 20(1):1-13. PubMed ID: 12673841
    [Abstract] [Full Text] [Related]

  • 18. Molecular crowding limits the role of fetal hemoglobin in therapy for sickle cell disease.
    Rotter M, Aprelev A, Adachi K, Ferrone FA.
    J Mol Biol; 2005 Apr 15; 347(5):1015-23. PubMed ID: 15784260
    [Abstract] [Full Text] [Related]

  • 19. A novel transgenic mouse model produced from lentiviral germline integration for the study of beta-thalassemia gene therapy.
    Li W, Xie S, Guo X, Gong X, Wang S, Lin D, Zhang J, Ren Z, Huang S, Zeng F, Zeng Y.
    Haematologica; 2008 Mar 15; 93(3):356-62. PubMed ID: 18268280
    [Abstract] [Full Text] [Related]

  • 20. Globin gene transfer for treatment of the beta-thalassemias and sickle cell disease.
    Sadelain M, Rivella S, Lisowski L, Samakoglu S, Rivière I.
    Best Pract Res Clin Haematol; 2004 Sep 15; 17(3):517-34. PubMed ID: 15498721
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.