These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


222 related items for PubMed ID: 10659706

  • 21. Real-time PCR assay to quantify Fusarium graminearum wild-type and recombinant mutant DNA in plant material.
    Dyer RB, Kendra DF, Brown DW.
    J Microbiol Methods; 2006 Dec; 67(3):534-42. PubMed ID: 16859788
    [Abstract] [Full Text] [Related]

  • 22. A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection.
    Hou Z, Xue C, Peng Y, Katan T, Kistler HC, Xu JR.
    Mol Plant Microbe Interact; 2002 Nov; 15(11):1119-27. PubMed ID: 12423017
    [Abstract] [Full Text] [Related]

  • 23. Quantitative trait loci for Fusarium head blight resistance in a recombinant inbred population of Wangshuibai/Wheaton.
    Yu JB, Bai GH, Zhou WC, Dong YH, Kolb FL.
    Phytopathology; 2008 Jan; 98(1):87-94. PubMed ID: 18943242
    [Abstract] [Full Text] [Related]

  • 24. Resistance in wheat to Fusarium infection and trichothecene formation.
    Snijders CH.
    Toxicol Lett; 2004 Oct 10; 153(1):37-46. PubMed ID: 15342079
    [Abstract] [Full Text] [Related]

  • 25. Transcriptome dynamics associated with resistance and susceptibility against fusarium head blight in four wheat genotypes.
    Pan Y, Liu Z, Rocheleau H, Fauteux F, Wang Y, McCartney C, Ouellet T.
    BMC Genomics; 2018 Aug 29; 19(1):642. PubMed ID: 30157778
    [Abstract] [Full Text] [Related]

  • 26. The feruloyl esterase gene family of Fusarium graminearum is differentially regulated by aromatic compounds and hosts.
    Balcerzak M, Harris LJ, Subramaniam R, Ouellet T.
    Fungal Biol; 2012 Apr 29; 116(4):478-88. PubMed ID: 22483046
    [Abstract] [Full Text] [Related]

  • 27. Identification of genes induced by Fusarium graminearum inoculation in the resistant durum wheat line Langdon(Dic-3A)10 and the susceptible parental line Langdon.
    Soresi D, Carrera AD, Echenique V, Garbus I.
    Microbiol Res; 2015 Aug 29; 177():53-66. PubMed ID: 26211966
    [Abstract] [Full Text] [Related]

  • 28. The 3ADON population of Fusarium graminearum found in North Dakota is more aggressive and produces a higher level of DON than the prevalent 15ADON population in spring wheat.
    Puri KD, Zhong S.
    Phytopathology; 2010 Oct 29; 100(10):1007-14. PubMed ID: 20839936
    [Abstract] [Full Text] [Related]

  • 29. Identification of functional genic components of major fusarium head blight resistance quantitative trait loci in wheat cultivar Sumai 3.
    Zhuang Y, Gala A, Yen Y.
    Mol Plant Microbe Interact; 2013 Apr 29; 26(4):442-50. PubMed ID: 23234406
    [Abstract] [Full Text] [Related]

  • 30. Fusarium graminearum TRI14 is required for high virulence and DON production on wheat but not for DON synthesis in vitro.
    Dyer RB, Plattner RD, Kendra DF, Brown DW.
    J Agric Food Chem; 2005 Nov 16; 53(23):9281-7. PubMed ID: 16277434
    [Abstract] [Full Text] [Related]

  • 31. Diseases on wheat and triticale under the growing conditions of Lubumbashi (Congo RD).
    Mundende RM, Ngongo M, Reheul D, Haesaert G.
    Commun Agric Appl Biol Sci; 2008 Nov 16; 73(2):95-100. PubMed ID: 19226746
    [Abstract] [Full Text] [Related]

  • 32. Transcriptome dynamics of a susceptible wheat upon Fusarium head blight reveals that molecular responses to Fusarium graminearum infection fit over the grain development processes.
    Chetouhi C, Bonhomme L, Lasserre-Zuber P, Cambon F, Pelletier S, Renou JP, Langin T.
    Funct Integr Genomics; 2016 Mar 16; 16(2):183-201. PubMed ID: 26797431
    [Abstract] [Full Text] [Related]

  • 33. Identification of Fusarium graminearum-responsive miRNAs and their targets in wheat by sRNA sequencing and degradome analysis.
    Jin X, Jia L, Wang Y, Li B, Sun D, Chen X.
    Funct Integr Genomics; 2020 Jan 16; 20(1):51-61. PubMed ID: 31302787
    [Abstract] [Full Text] [Related]

  • 34. Transcriptome analysis of trichothecene-induced gene expression in barley.
    Boddu J, Cho S, Muehlbauer GJ.
    Mol Plant Microbe Interact; 2007 Nov 16; 20(11):1364-75. PubMed ID: 17977148
    [Abstract] [Full Text] [Related]

  • 35. Developing kernel and rachis node induce the trichothecene pathway of Fusarium graminearum during wheat head infection.
    Ilgen P, Hadeler B, Maier FJ, Schäfer W.
    Mol Plant Microbe Interact; 2009 Aug 16; 22(8):899-908. PubMed ID: 19589066
    [Abstract] [Full Text] [Related]

  • 36. Apoplastic extracts from a transgenic wheat line exhibiting lesion-mimic phenotype have multiple pathogenesis-related proteins that are antifungal.
    Anand A, Lei Z, Sumner LW, Mysore KS, Arakane Y, Bockus WW, Muthukrishnan S.
    Mol Plant Microbe Interact; 2004 Dec 16; 17(12):1306-17. PubMed ID: 15597736
    [Abstract] [Full Text] [Related]

  • 37. Microbiological and SYBR green real-time PCR detection of major Fusarium head blight pathogens on wheat ears.
    Moradi M, Oerke EC, Steiner U, Tesfaye D, Schellander K, Dehne HW.
    Mikrobiologiia; 2010 Dec 16; 79(5):655-63. PubMed ID: 21090507
    [Abstract] [Full Text] [Related]

  • 38. The transcriptome of Fusarium graminearum during the infection of wheat.
    Lysøe E, Seong KY, Kistler HC.
    Mol Plant Microbe Interact; 2011 Sep 16; 24(9):995-1000. PubMed ID: 21585270
    [Abstract] [Full Text] [Related]

  • 39. Fusarium graminearum forms mycotoxin producing infection structures on wheat.
    Boenisch MJ, Schäfer W.
    BMC Plant Biol; 2011 Jul 28; 11():110. PubMed ID: 21798058
    [Abstract] [Full Text] [Related]

  • 40. Greenhouse and field testing of transgenic wheat plants stably expressing genes for thaumatin-like protein, chitinase and glucanase against Fusarium graminearum.
    Anand A, Zhou T, Trick HN, Gill BS, Bockus WW, Muthukrishnan S.
    J Exp Bot; 2003 Mar 28; 54(384):1101-11. PubMed ID: 12598580
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.