These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


286 related items for PubMed ID: 10660893

  • 1. Lingual BDNF and NT-3 mRNA expression patterns and their relation to innervation in the human tongue: similarities and differences compared with rodents.
    Nosrat IV, Lindskog S, Seiger A, Nosrat CA.
    J Comp Neurol; 2000 Feb 07; 417(2):133-52. PubMed ID: 10660893
    [Abstract] [Full Text] [Related]

  • 2. Distinctive spatiotemporal expression patterns for neurotrophins develop in gustatory papillae and lingual tissues in embryonic tongue organ cultures.
    Nosrat CA, MacCallum DK, Mistretta CM.
    Cell Tissue Res; 2001 Jan 07; 303(1):35-45. PubMed ID: 11236003
    [Abstract] [Full Text] [Related]

  • 3. Differential expression of brain-derived neurotrophic factor and neurotrophin 3 mRNA in lingual papillae and taste buds indicates roles in gustatory and somatosensory innervation.
    Nosrat CA, Ebendal T, Olson L.
    J Comp Neurol; 1996 Dec 23; 376(4):587-602. PubMed ID: 8978472
    [Abstract] [Full Text] [Related]

  • 4. Lingual deficits in neurotrophin double knockout mice.
    Nosrat IV, Agerman K, Marinescu A, Ernfors P, Nosrat CA.
    J Neurocytol; 2004 Dec 23; 33(6):607-15. PubMed ID: 16217617
    [Abstract] [Full Text] [Related]

  • 5. Changes in neurotrophin-3 messenger RNA expression patterns in the prenatal rat tongue suggest guidance of developing somatosensory nerves to their final targets.
    Nosrat CA, Olson L.
    Cell Tissue Res; 1998 Jun 23; 292(3):619-23. PubMed ID: 9582420
    [Abstract] [Full Text] [Related]

  • 6. Expression patterns of neurotrophic factor mRNAs in developing human teeth.
    Nosrat I, Seiger A, Olson L, Nosrat CA.
    Cell Tissue Res; 2002 Nov 23; 310(2):177-87. PubMed ID: 12397373
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Epithelial overexpression of BDNF or NT4 disrupts targeting of taste neurons that innervate the anterior tongue.
    Krimm RF, Miller KK, Kitzman PH, Davis BM, Albers KM.
    Dev Biol; 2001 Apr 15; 232(2):508-21. PubMed ID: 11401409
    [Abstract] [Full Text] [Related]

  • 9. Alterations in size, number, and morphology of gustatory papillae and taste buds in BDNF null mutant mice demonstrate neural dependence of developing taste organs.
    Mistretta CM, Goosens KA, Farinas I, Reichardt LF.
    J Comp Neurol; 1999 Jun 21; 409(1):13-24. PubMed ID: 10363708
    [Abstract] [Full Text] [Related]

  • 10. Taste cell formation does not require gustatory and somatosensory innervation.
    Ito A, Nosrat IV, Nosrat CA.
    Neurosci Lett; 2010 Mar 08; 471(3):189-94. PubMed ID: 20109530
    [Abstract] [Full Text] [Related]

  • 11. Brain-derived neurotrophic factor-, neurotrophin-3-, and tyrosine kinase receptor-like immunoreactivity in lingual taste bud fields of mature hamster.
    Ganchrow D, Ganchrow JR, Verdin-Alcazar M, Whitehead MC.
    J Comp Neurol; 2003 Jan 01; 455(1):11-24. PubMed ID: 12454993
    [Abstract] [Full Text] [Related]

  • 12. Lingual deficits in BDNF and NT3 mutant mice leading to gustatory and somatosensory disturbances, respectively.
    Nosrat CA, Blomlöf J, ElShamy WM, Ernfors P, Olson L.
    Development; 1997 Apr 01; 124(7):1333-42. PubMed ID: 9118804
    [Abstract] [Full Text] [Related]

  • 13. Temporal and spatial patterns of tenascin and laminin immunoreactivity suggest roles for extracellular matrix in development of gustatory papillae and taste buds.
    Mistretta CM, Haus LF.
    J Comp Neurol; 1996 Jan 15; 364(3):535-555. PubMed ID: 8820882
    [Abstract] [Full Text] [Related]

  • 14. Role of brain-derived neurotrophic factor in target invasion in the gustatory system.
    Ringstedt T, Ibáñez CF, Nosrat CA.
    J Neurosci; 1999 May 01; 19(9):3507-18. PubMed ID: 10212310
    [Abstract] [Full Text] [Related]

  • 15. Brain-derived neurotrophic factor-, neurotrophin-3-, and tyrosine kinase receptor-like immunoreactivity in lingual taste bud fields of mature hamster after sensory denervation.
    Ganchrow D, Ganchrow JR, Verdin-Alcazar M, Whitehead MC.
    J Comp Neurol; 2003 Jan 01; 455(1):25-39. PubMed ID: 12454994
    [Abstract] [Full Text] [Related]

  • 16. Effects of dietary Na+ deprivation on epithelial Na+ channel (ENaC), BDNF, and TrkB mRNA expression in the rat tongue.
    Huang T, Stähler F.
    BMC Neurosci; 2009 Mar 12; 10():19. PubMed ID: 19284620
    [Abstract] [Full Text] [Related]

  • 17. Epithelial overexpression of BDNF and NT4 produces distinct gustatory axon morphologies that disrupt initial targeting.
    Lopez GF, Krimm RF.
    Dev Biol; 2006 Apr 15; 292(2):457-68. PubMed ID: 16500639
    [Abstract] [Full Text] [Related]

  • 18. Initial innervation of embryonic rat tongue and developing taste papillae: nerves follow distinctive and spatially restricted pathways.
    Mbiene JP, Mistretta CM.
    Acta Anat (Basel); 1997 Apr 15; 160(3):139-58. PubMed ID: 9718388
    [Abstract] [Full Text] [Related]

  • 19. Effects of glossopharyngeal nerve section on the expression of neurotrophins and their receptors in lingual taste buds of adult mice.
    Yee C, Bartel DL, Finger TE.
    J Comp Neurol; 2005 Oct 03; 490(4):371-90. PubMed ID: 16127713
    [Abstract] [Full Text] [Related]

  • 20. Building sensory receptors on the tongue.
    Oakley B, Witt M.
    J Neurocytol; 2004 Dec 03; 33(6):631-46. PubMed ID: 16217619
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.