These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


226 related items for PubMed ID: 10665380

  • 1. The fictively breathing tadpole brainstem preparation as a model for the development of respiratory pattern generation and central chemoreception.
    Gdovin MJ, Torgerson CS, Remmers JE.
    Comp Biochem Physiol A Mol Integr Physiol; 1999 Nov; 124(3):275-86. PubMed ID: 10665380
    [Abstract] [Full Text] [Related]

  • 2. Fictive gill and lung ventilation in the pre- and postmetamorphic tadpole brain stem.
    Torgerson CS, Gdovin MJ, Remmers JE.
    J Neurophysiol; 1998 Oct; 80(4):2015-22. PubMed ID: 9772257
    [Abstract] [Full Text] [Related]

  • 3. Neurorespiratory pattern of gill and lung ventilation in the decerebrate spontaneously breathing tadpole.
    Gdovin MJ, Torgerson CS, Remmers JE.
    Respir Physiol; 1998 Aug; 113(2):135-46. PubMed ID: 9832232
    [Abstract] [Full Text] [Related]

  • 4. Ontogeny of central chemoreception during fictive gill and lung ventilation in an in vitro brainstem preparation of Rana catesbeiana.
    Torgerson C, Gdovin M, Remmers J.
    J Exp Biol; 1997 Aug; 200(Pt 15):2063-72. PubMed ID: 9319973
    [Abstract] [Full Text] [Related]

  • 5. Regulation of the respiratory central pattern generator by chloride-dependent inhibition during development in the bullfrog (Rana catesbeiana).
    Broch L, Morales RD, Sandoval AV, Hedrick MS.
    J Exp Biol; 2002 Apr; 205(Pt 8):1161-9. PubMed ID: 11919275
    [Abstract] [Full Text] [Related]

  • 6. Respiratory activity in the facial nucleus in an in vitro brainstem of tadpole, Rana catesbeiana.
    Liao G-S, Kubin L, Galante RJ, Fishman AP, Pack AI.
    J Physiol; 1996 Apr 15; 492 ( Pt 2)(Pt 2):529-44. PubMed ID: 9019548
    [Abstract] [Full Text] [Related]

  • 7. Nitric oxide changes its role as a modulator of respiratory motor activity during development in the bullfrog (Rana catesbeiana).
    Hedrick MS, Chen AK, Jessop KL.
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Oct 15; 142(2):231-40. PubMed ID: 16023875
    [Abstract] [Full Text] [Related]

  • 8. Development of the respiratory response to hypoxia in the isolated brainstem of the bullfrog Rana catesbeiana.
    Winmill RE, Chen AK, Hedrick MS.
    J Exp Biol; 2005 Jan 15; 208(Pt 2):213-22. PubMed ID: 15634841
    [Abstract] [Full Text] [Related]

  • 9. Effect of prevention of lung inflation on metamorphosis and respiration in the developing bullfrog tadpole, Rana catesbeiana.
    Gdovin MJ, Jackson VV, Zamora DA, Leiter JC.
    J Exp Zool A Comp Exp Biol; 2006 Apr 01; 305(4):335-47. PubMed ID: 16493648
    [Abstract] [Full Text] [Related]

  • 10. Role of chloride-mediated inhibition in respiratory rhythmogenesis in an in vitro brainstem of tadpole, Rana catesbeiana.
    Galante RJ, Kubin L, Fishman AP, Pack AI.
    J Physiol; 1996 Apr 15; 492 ( Pt 2)(Pt 2):545-58. PubMed ID: 9019549
    [Abstract] [Full Text] [Related]

  • 11. Temperature and pH/CO(2) modulate respiratory activity in the isolated brainstem of the bullfrog (Rana catesbeiana).
    Morales RD, Hedrick MS.
    Comp Biochem Physiol A Mol Integr Physiol; 2002 Jun 15; 132(2):477-87. PubMed ID: 12020664
    [Abstract] [Full Text] [Related]

  • 12. Corticosterone promotes emergence of fictive air breathing in Xenopus laevis Daudin tadpole brainstems.
    Fournier S, Dubé PL, Kinkead R.
    J Exp Biol; 2012 Apr 01; 215(Pt 7):1144-50. PubMed ID: 22399659
    [Abstract] [Full Text] [Related]

  • 13. Persistent augmentation of fictive air breathing by hypoxia: An in vitro study of the role of GABAB signaling in pre-metamorphic tadpoles.
    Janes TA, Guay LM, Fournier S, Kinkead R.
    Comp Biochem Physiol A Mol Integr Physiol; 2023 Jul 01; 281():111437. PubMed ID: 37088410
    [Abstract] [Full Text] [Related]

  • 14. Sites of respiratory rhythmogenesis during development in the tadpole.
    Torgerson CS, Gdovin MJ, Remmers JE.
    Am J Physiol Regul Integr Comp Physiol; 2001 Apr 01; 280(4):R913-20. PubMed ID: 11247810
    [Abstract] [Full Text] [Related]

  • 15. Location of central respiratory chemoreceptors in the developing tadpole.
    Torgerson CS, Gdovin MJ, Brandt R, Remmers JE.
    Am J Physiol Regul Integr Comp Physiol; 2001 Apr 01; 280(4):R921-8. PubMed ID: 11247811
    [Abstract] [Full Text] [Related]

  • 16. [Ontogeny of respiratory muscle control. Evidence from the amphibian model].
    Straus C.
    Rev Mal Respir; 2000 Jun 01; 17(2 Pt 2):585-90. PubMed ID: 10939119
    [Abstract] [Full Text] [Related]

  • 17. Developmental changes in the modulation of respiratory rhythm generation by extracellular K+ in the isolated bullfrog brainstem.
    Winmill RE, Hedrick MS.
    J Neurobiol; 2003 Jun 01; 55(3):278-87. PubMed ID: 12717698
    [Abstract] [Full Text] [Related]

  • 18. Serotonergic modulation of respiratory rhythmogenesis and central chemoreception.
    Gdovin MJ, Zamora DA, Ravindran CR, Leiter JC.
    Ethn Dis; 2010 Jun 01; 20(1 Suppl 1):S1-39-44. PubMed ID: 20521383
    [Abstract] [Full Text] [Related]

  • 19. Fictive respiratory rhythm in the isolated brainstem of frogs.
    McLean HA, Kimura N, Kogo N, Perry SF, Remmers JE.
    J Comp Physiol A; 1995 May 01; 176(5):703-13. PubMed ID: 7769569
    [Abstract] [Full Text] [Related]

  • 20. Gap junction blockade with carbenoxolone differentially affects fictive breathing in larval and adult bullfrogs.
    Winmill RE, Hedrick MS.
    Respir Physiol Neurobiol; 2003 Nov 14; 138(2-3):239-51. PubMed ID: 14609513
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.