These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
324 related items for PubMed ID: 10673344
1. Trypanosoma cruzi: the effect of nitric oxide synthesis inhibition on the CD4 T cell response to the trans-sialidase superfamily. Millar AE, Kahn SJ. Exp Parasitol; 2000 Feb; 94(2):84-91. PubMed ID: 10673344 [Abstract] [Full Text] [Related]
2. The surface protein superfamily of Trypanosoma cruzi stimulates a polarized Th1 response that becomes anergic. Millar AE, Wleklinski-Lee M, Kahn SJ. J Immunol; 1999 May 15; 162(10):6092-9. PubMed ID: 10229851 [Abstract] [Full Text] [Related]
3. Trypanosoma cruzi: Tc52 released protein-induced increased expression of nitric oxide synthase and nitric oxide production by macrophages. Fernandez-Gomez R, Esteban S, Gomez-Corvera R, Zoulika K, Ouaissi A. J Immunol; 1998 Apr 01; 160(7):3471-9. PubMed ID: 9531308 [Abstract] [Full Text] [Related]
4. The SA85-1.1 protein of the Trypanosoma cruzi trans-sialidase superfamily is a dominant T-cell antigen. Millar AE, Kahn SJ. Infect Immun; 2000 Jun 01; 68(6):3574-80. PubMed ID: 10816514 [Abstract] [Full Text] [Related]
5. Cytokine and nitric oxide regulation of the immunosuppression in Trypanosoma cruzi infection. Abrahamsohn IA, Coffman RL. J Immunol; 1995 Oct 15; 155(8):3955-63. PubMed ID: 7561103 [Abstract] [Full Text] [Related]
6. Antigen-specific Il-4- and IL-10-secreting CD4+ lymphocytes increase in vivo susceptibility to Trypanosoma cruzi infection. Barbosa de Oliveira LC, Curotto de Lafaille MA, Collet de Araujo Lima GM, de Almeida Abrahamsohn I. Cell Immunol; 1996 May 25; 170(1):41-53. PubMed ID: 8660798 [Abstract] [Full Text] [Related]
7. Identification of Trypanosoma cruzi trans-sialidase family members as targets of protective CD8+ TC1 responses. Wizel B, Nunes M, Tarleton RL. J Immunol; 1997 Dec 15; 159(12):6120-30. PubMed ID: 9550413 [Abstract] [Full Text] [Related]
8. Trypanosoma cruzi-infected individuals demonstrate varied antibody responses to a panel of trans-sialidase proteins encoded by SA85-1 genes. Duthie MS, Cetron MS, Van Voorhis WC, Kahn SJ. Acta Trop; 2005 Mar 15; 93(3):317-29. PubMed ID: 15725381 [Abstract] [Full Text] [Related]
9. Inhibition of inducible nitric oxide synthase intensifies injury and functional deterioration in autoimmune interstitial nephritis. Gabbai FB, Boggiano C, Peter T, Khang S, Archer C, Gold DP, Kelly CJ. J Immunol; 1997 Dec 15; 159(12):6266-75. PubMed ID: 9550431 [Abstract] [Full Text] [Related]
10. CTLA-4 regulates the murine immune response to Trypanosoma cruzi infection. Graefe SE, Jacobs T, Wächter U, Bröker BM, Fleischer B. Parasite Immunol; 2004 Jan 15; 26(1):19-28. PubMed ID: 15198642 [Abstract] [Full Text] [Related]
11. Involvement of nitric oxide (NO) and TNF-alpha in the oxidative stress associated with anemia in experimental Trypanosoma cruzi infection. Malvezi AD, Cecchini R, de Souza F, Tadokoro CE, Rizzo LV, Pinge-Filho P. FEMS Immunol Med Microbiol; 2004 May 01; 41(1):69-77. PubMed ID: 15094169 [Abstract] [Full Text] [Related]
12. Trypanosoma cruzi: roles for perforin-dependent and perforin-independent immune mechanisms in acute resistance. Nickell SP, Sharma D. Exp Parasitol; 2000 Apr 01; 94(4):207-16. PubMed ID: 10831388 [Abstract] [Full Text] [Related]
13. Effects of N(G)-Nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthesis, on IL-2-induced LAK cell generation in vivo and in vitro in healthy and tumor-bearing mice. Orucevic A, Lala PK. Cell Immunol; 1996 Apr 10; 169(1):125-32. PubMed ID: 8612285 [Abstract] [Full Text] [Related]
14. Molecular basis of Trypanosoma cruzi-induced immunosuppression. Altered expression by activated human lymphocytes of molecules which regulate antigen recognition and progression through the cell cycle. Kierszenbaum F, Moretti E, Sztein MB. Biol Res; 1993 Apr 10; 26(1-2):197-207. PubMed ID: 7670532 [Abstract] [Full Text] [Related]
15. Intracellular co-localization of Trypanosoma cruzi and inducible nitric oxide synthase (iNOS): evidence for dual pathway of iNOS induction. Rottenberg ME, Castaños-Velez E, de Mesquita R, Laguardia OG, Biberfeld P, Orn A. Eur J Immunol; 1996 Dec 10; 26(12):3203-13. PubMed ID: 8977323 [Abstract] [Full Text] [Related]
16. Inhibition of inducible nitric oxide synthase enhances anti-tumour immune responses in rats immunized with IFN-gamma-secreting glioma cells. Badn W, Hegardt P, Fellert MA, Darabi A, Esbjörnsson M, Smith KE, Janelidze S, Salford LG, Visse E, Siesjö P. Scand J Immunol; 2007 Mar 10; 65(3):289-97. PubMed ID: 17309784 [Abstract] [Full Text] [Related]
17. Protection of mice against Trypanosoma cruzi by immunization with paraflagellar rod proteins requires T cell, but not B cell, function. Miller MJ, Wrightsman RA, Stryker GA, Manning JE. J Immunol; 1997 Jun 01; 158(11):5330-7. PubMed ID: 9164953 [Abstract] [Full Text] [Related]
18. Inducible nitric oxide synthase inhibitors prolonged the survival of skin xenografts through selective down-regulation of pro-inflammatory cytokine and CC-chemokine expressions. Kim JY, Kim D, Lee EM, Choi I, Park CG, Kim KS, Ha J, Kim SJ, Yang J, Kim YS, Han JS, Kim S, Lee JS, Ahn C. Transpl Immunol; 2003 Jun 01; 12(1):63-72. PubMed ID: 14551033 [Abstract] [Full Text] [Related]
19. Coculture of human peripheral blood mononuclear cells with Trypanosoma cruzi leads to proliferation of lymphocytes and cytokine production. Van Voorhis WC. J Immunol; 1992 Jan 01; 148(1):239-48. PubMed ID: 1727869 [Abstract] [Full Text] [Related]