These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


105 related items for PubMed ID: 10689468

  • 1. Evoked potentials in sound localization: timing of activity along the auditory pathway.
    Pratt H, Polyakov A.
    Electroencephalogr Clin Neurophysiol Suppl; 1999; 50():235-42. PubMed ID: 10689468
    [No Abstract] [Full Text] [Related]

  • 2. [Reflection of the characteristics of acoustic signals in the summary synchronized responses of neurons of the auditory system of the cat].
    Radionova EA.
    Neirofiziologiia; 1987; 19(1):67-74. PubMed ID: 3574554
    [Abstract] [Full Text] [Related]

  • 3. The intraparietal sulcus and perceptual organization.
    Cusack R.
    J Cogn Neurosci; 2005 Apr; 17(4):641-51. PubMed ID: 15829084
    [Abstract] [Full Text] [Related]

  • 4. [Reflection of the effect of binaural release from masking in human long-latency auditory evoked potentials].
    Vaĭtulevich SF, Mal'tseva NF.
    Fiziol Cheloveka; 1987 Apr; 13(2):196-200. PubMed ID: 3582841
    [No Abstract] [Full Text] [Related]

  • 5. [Event-related potentials of human brain in spatial hearing].
    Al'tman IaA, Vaĭtulevich SF, Shestopalova LB, Petropavlovskaia EA, Nikitin NI.
    Usp Fiziol Nauk; 2012 Apr; 43(2):3-18. PubMed ID: 22690588
    [Abstract] [Full Text] [Related]

  • 6. Sound localization during homotopic and heterotopic bilateral cooling deactivation of primary and nonprimary auditory cortical areas in the cat.
    Malhotra S, Lomber SG.
    J Neurophysiol; 2007 Jan; 97(1):26-43. PubMed ID: 17035367
    [Abstract] [Full Text] [Related]

  • 7. Auditory evoked fields to variations of interaural time delay.
    Soeta Y, Nakagawa S, Tonoike M.
    Neurosci Lett; 2005 Aug 05; 383(3):311-6. PubMed ID: 15955427
    [Abstract] [Full Text] [Related]

  • 8. Binaural interaction of bone-conducted auditory brainstem responses.
    Setou M, Kurauchi T, Tsuzuku T, Kaga K.
    Acta Otolaryngol; 2001 Jun 05; 121(4):486-9. PubMed ID: 11508509
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Preceding weak noise sharpens the frequency tuning and elevates the response threshold of the mouse inferior collicular neurons through GABAergic inhibition.
    Wang X, Jen PH, Wu FJ, Chen QC.
    Brain Res; 2007 Sep 05; 1167():80-91. PubMed ID: 17689505
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Development of sound localization mechanisms in the mongolian gerbil is shaped by early acoustic experience.
    Seidl AH, Grothe B.
    J Neurophysiol; 2005 Aug 05; 94(2):1028-36. PubMed ID: 15829592
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. The spatio-temporal brain dynamics of processing and integrating sound localization cues in humans.
    Tardif E, Murray MM, Meylan R, Spierer L, Clarke S.
    Brain Res; 2006 May 30; 1092(1):161-76. PubMed ID: 16684510
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.