These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
98 related items for PubMed ID: 10691988
1. Assessment of amino-acid substitutions at tryptophan 16 in alpha-galactosidase. Maranville E, Zhu A. Eur J Biochem; 2000 Mar; 267(5):1495-501. PubMed ID: 10691988 [Abstract] [Full Text] [Related]
2. The carboxyl terminus of coffee bean alpha-galactosidase is critical for enzyme activity. Maranville E, Zhu A. Arch Biochem Biophys; 2000 Jan 01; 373(1):225-30. PubMed ID: 10620342 [Abstract] [Full Text] [Related]
3. Trp-16 is essential for the activity of alpha-galactosidase and alpha-N-acetylgalactosaminidase. Zhu A, Monahan C, Wang ZK. Biochim Biophys Acta; 1996 Sep 13; 1297(1):99-104. PubMed ID: 8841386 [Abstract] [Full Text] [Related]
4. Identification of tyrosine 108 in coffee bean alpha-galactosidase as an essential residue for the enzyme activity. Zhu A, Wang ZK, Goldstein J. Biochim Biophys Acta; 1995 Mar 15; 1247(2):260-4. PubMed ID: 7696317 [Abstract] [Full Text] [Related]
5. Role of methionine in the active site of alpha-galactosidase from Trichoderma reesei. Kachurin AM, Golubev AM, Geisow MM, Veselkina OS, Isaeva-Ivanova LS, Neustroev KN. Biochem J; 1995 Jun 15; 308 ( Pt 3)(Pt 3):955-64. PubMed ID: 8948456 [Abstract] [Full Text] [Related]
8. Expression and characterization of glycosylated and catalytically active recombinant human alpha-galactosidase A produced in Pichia pastoris. Chen Y, Jin M, Egborge T, Coppola G, Andre J, Calhoun DH. Protein Expr Purif; 2000 Dec 15; 20(3):472-84. PubMed ID: 11087687 [Abstract] [Full Text] [Related]
13. Roles of active site tryptophans in substrate binding and catalysis by alpha-1,3 galactosyltransferase. Zhang Y, Deshpande A, Xie Z, Natesh R, Acharya KR, Brew K. Glycobiology; 2004 Dec 15; 14(12):1295-302. PubMed ID: 15229192 [Abstract] [Full Text] [Related]
17. Contribution to activity of histidine-aromatic, amide-aromatic, and aromatic-aromatic interactions in the extended catalytic site of cysteine proteinases. Brömme D, Bonneau PR, Purisima E, Lachance P, Hajnik S, Thomas DY, Storer AC. Biochemistry; 1996 Apr 02; 35(13):3970-9. PubMed ID: 8672429 [Abstract] [Full Text] [Related]
18. Characterization and site-directed mutagenesis of an α-galactosidase from the deep-sea bacterium Bacillus megaterium. Xu H, Qin Y, Huang Z, Liu Z. Enzyme Microb Technol; 2014 Mar 05; 56():46-52. PubMed ID: 24564902 [Abstract] [Full Text] [Related]
19. Substrate-induced tryptophan fluorescence changes in EmrE, the smallest ion-coupled multidrug transporter. Elbaz Y, Tayer N, Steinfels E, Steiner-Mordoch S, Schuldiner S. Biochemistry; 2005 May 17; 44(19):7369-77. PubMed ID: 15882076 [Abstract] [Full Text] [Related]
20. Site-directed mutagenesis of two aromatic residues lining the active site pocket of the yeast Ltp1. Paoli P, Modesti A, Magherini F, Gamberi T, Caselli A, Manao G, Raugei G, Camici G, Ramponi G. Biochim Biophys Acta; 2007 May 17; 1770(5):753-62. PubMed ID: 17296269 [Abstract] [Full Text] [Related] Page: [Next] [New Search]