These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


309 related items for PubMed ID: 10695016

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Long-term correction of phagocyte NADPH oxidase activity by retroviral-mediated gene transfer in murine X-linked chronic granulomatous disease.
    Dinauer MC, Li LL, Björgvinsdóttir H, Ding C, Pech N.
    Blood; 1999 Aug 01; 94(3):914-22. PubMed ID: 10419882
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Lentivirus-mediated gene transfer of gp91phox corrects chronic granulomatous disease (CGD) phenotype in human X-CGD cells.
    Saulnier SO, Steinhoff D, Dinauer MC, Zufferey R, Trono D, Seger RA, Hossle JP.
    J Gene Med; 2000 Aug 01; 2(5):317-25. PubMed ID: 11045425
    [Abstract] [Full Text] [Related]

  • 29. Missense mutations in the gp91-phox gene encoding cytochrome b558 in patients with cytochrome b positive and negative X-linked chronic granulomatous disease.
    Kaneda M, Sakuraba H, Ohtake A, Nishida A, Kiryu C, Kakinuma K.
    Blood; 1999 Mar 15; 93(6):2098-104. PubMed ID: 10068684
    [Abstract] [Full Text] [Related]

  • 30. Statistical and mutational analysis of chronic granulomatous disease in Japan with special reference to gp91-phox and p22-phox deficiency.
    Ishibashi F, Nunoi H, Endo F, Matsuda I, Kanegasaki S.
    Hum Genet; 2000 May 15; 106(5):473-81. PubMed ID: 10914676
    [Abstract] [Full Text] [Related]

  • 31. Expansion of genetically corrected neutrophils in chronic granulomatous disease mice by cotransferring a therapeutic gene and a selective amplifier gene.
    Hara T, Kume A, Hanazono Y, Mizukami H, Okada T, Tsurumi H, Moriwaki H, Ueda Y, Hasegawa M, Ozawa K.
    Gene Ther; 2004 Sep 15; 11(18):1370-7. PubMed ID: 15229634
    [Abstract] [Full Text] [Related]

  • 32. Genetic correction of X-linked chronic granulomatous disease with novel foamy virus vectors.
    Chatziandreou I, Siapati EK, Vassilopoulos G.
    Exp Hematol; 2011 Jun 15; 39(6):643-52. PubMed ID: 21426924
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Progress in gene therapy for chronic granulomatous disease.
    Malech HL.
    J Infect Dis; 1999 Mar 15; 179 Suppl 2():S318-25. PubMed ID: 10081502
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. p22-phox-deficient chronic granulomatous disease: reconstitution by retrovirus-mediated expression and identification of a biosynthetic intermediate of gp91-phox.
    Porter CD, Parkar MH, Verhoeven AJ, Levinsky RJ, Collins MK, Kinnon C.
    Blood; 1994 Oct 15; 84(8):2767-75. PubMed ID: 7919388
    [Abstract] [Full Text] [Related]

  • 40. Gene therapy for chronic granulomatous disease.
    Stein S, Siler U, Ott MG, Seger R, Grez M.
    Curr Opin Mol Ther; 2006 Oct 15; 8(5):415-22. PubMed ID: 17078383
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 16.