These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Statistical textural features for detection of microcalcifications in digitized mammograms. Kim JK, Park HW. IEEE Trans Med Imaging; 1999 Mar; 18(3):231-8. PubMed ID: 10363701 [Abstract] [Full Text] [Related]
9. Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images. Sahiner B, Chan HP, Petrick N, Wei D, Helvie MA, Adler DD, Goodsitt MM. IEEE Trans Med Imaging; 1996 Mar; 15(5):598-610. PubMed ID: 18215941 [Abstract] [Full Text] [Related]
11. Computerized classification of benign and malignant masses on digitized mammograms: a study of robustness. Huo Z, Giger ML, Vyborny CJ, Wolverton DE, Metz CE. Acad Radiol; 2000 Dec; 7(12):1077-84. PubMed ID: 11131052 [Abstract] [Full Text] [Related]
12. Effect of dominant features on neural network performance in the classification of mammographic lesions. Huo Z, Giger ML, Metz CE. Phys Med Biol; 1999 Oct; 44(10):2579-95. PubMed ID: 10533930 [Abstract] [Full Text] [Related]
15. Malignant and benign clustered microcalcifications: automated feature analysis and classification. Jiang Y, Nishikawa RM, Wolverton DE, Metz CE, Giger ML, Schmidt RA, Vyborny CJ, Doi K. Radiology; 1996 Mar; 198(3):671-8. PubMed ID: 8628853 [Abstract] [Full Text] [Related]
16. Computerized characterization of masses on mammograms: the rubber band straightening transform and texture analysis. Sahiner B, Chan HP, Petrick N, Helvie MA, Goodsitt MM. Med Phys; 1998 Apr; 25(4):516-26. PubMed ID: 9571620 [Abstract] [Full Text] [Related]