These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
445 related items for PubMed ID: 10698705
1. Allosteric regulation of neuronal nitric oxide synthase by tetrahydrobiopterin and suppression of auto-damaging superoxide. Kotsonis P, Fröhlich LG, Shutenko ZV, Horejsi R, Pfleiderer W, Schmidt HH. Biochem J; 2000 Mar 15; 346 Pt 3(Pt 3):767-76. PubMed ID: 10698705 [Abstract] [Full Text] [Related]
2. Tetrahydrobiopterin inhibits monomerization and is consumed during catalysis in neuronal NO synthase. Reif A, Fröhlich LG, Kotsonis P, Frey A, Bömmel HM, Wink DA, Pfleiderer W, Schmidt HH. J Biol Chem; 1999 Aug 27; 274(35):24921-9. PubMed ID: 10455167 [Abstract] [Full Text] [Related]
3. Tetrahydrobiopterin regulates superoxide and nitric oxide generation by recombinant endothelial nitric oxide synthase. Wever RM, van Dam T, van Rijn HJ, de Groot F, Rabelink TJ. Biochem Biophys Res Commun; 1997 Aug 18; 237(2):340-4. PubMed ID: 9268712 [Abstract] [Full Text] [Related]
4. A tryptophan that modulates tetrahydrobiopterin-dependent electron transfer in nitric oxide synthase regulates enzyme catalysis by additional mechanisms. Wang ZQ, Wei CC, Santolini J, Panda K, Wang Q, Stuehr DJ. Biochemistry; 2005 Mar 29; 44(12):4676-90. PubMed ID: 15779894 [Abstract] [Full Text] [Related]
5. Redox function of tetrahydrobiopterin and effect of L-arginine on oxygen binding in endothelial nitric oxide synthase. Berka V, Yeh HC, Gao D, Kiran F, Tsai AL. Biochemistry; 2004 Oct 19; 43(41):13137-48. PubMed ID: 15476407 [Abstract] [Full Text] [Related]
6. Autoinhibition of neuronal nitric oxide synthase: distinct effects of reactive nitrogen and oxygen species on enzyme activity. Kotsonis P, Frey A, Fröhlich LG, Hofmann H, Reif A, Wink DA, Feelisch M, Schmidt HH. Biochem J; 1999 Jun 15; 340 ( Pt 3)(Pt 3):745-52. PubMed ID: 10359660 [Abstract] [Full Text] [Related]
7. Oxygen-induced radical intermediates in the nNOS oxygenase domain regulated by L-arginine, tetrahydrobiopterin, and thiol. Berka V, Wang LH, Tsai AL. Biochemistry; 2008 Jan 08; 47(1):405-20. PubMed ID: 18052254 [Abstract] [Full Text] [Related]
8. Structural analysis of isoform-specific inhibitors targeting the tetrahydrobiopterin binding site of human nitric oxide synthases. Matter H, Kumar HS, Fedorov R, Frey A, Kotsonis P, Hartmann E, Fröhlich LG, Reif A, Pfleiderer W, Scheurer P, Ghosh DK, Schlichting I, Schmidt HH. J Med Chem; 2005 Jul 28; 48(15):4783-92. PubMed ID: 16033258 [Abstract] [Full Text] [Related]
10. Modulation of nitric-oxide synthase by nicotine. Tonnessen BH, Severson SR, Hurt RD, Miller VM. J Pharmacol Exp Ther; 2000 Nov 28; 295(2):601-6. PubMed ID: 11046094 [Abstract] [Full Text] [Related]
11. Reductive activation of Cr(Vi) by nitric oxide synthase. Porter R, Jáchymová M, Martásek P, Kalyanaraman B, Vásquez-Vivar J. Chem Res Toxicol; 2005 May 28; 18(5):834-43. PubMed ID: 15892577 [Abstract] [Full Text] [Related]
12. Two modes of binding of N-hydroxyguanidines to NO synthases: first evidence for the formation of iron-N-hydroxyguanidine complexes and key role of tetrahydrobiopterin in determining the binding mode. Lefèvre-Groboillot D, Frapart Y, Desbois A, Zimmermann JL, Boucher JL, Gorren AC, Mayer B, Stuehr DJ, Mansuy D. Biochemistry; 2003 Apr 08; 42(13):3858-67. PubMed ID: 12667076 [Abstract] [Full Text] [Related]
13. Active-site structure analysis of recombinant human inducible nitric oxide synthase using imidazole. Chabin RM, McCauley E, Calaycay JR, Kelly TM, MacNaul KL, Wolfe GC, Hutchinson NI, Madhusudanaraju S, Schmidt JA, Kozarich JW, Wong KK. Biochemistry; 1996 Jul 23; 35(29):9567-75. PubMed ID: 8755738 [Abstract] [Full Text] [Related]
14. Tetrahydrobiopterin and nitric oxide synthase dimer levels are not changed following hypoxia-ischemia in the newborn rat. Wainwright MS, Arteaga E, Fink R, Ravi K, Chace DH, Black SM. Brain Res Dev Brain Res; 2005 May 12; 156(2):183-92. PubMed ID: 16099305 [Abstract] [Full Text] [Related]
17. Superoxide dismutase and catalase are required to detect (.-)NO from both coupled and uncoupled neuronal no synthase. Reif A, Shutenko ZV, Feelisch M, Schmidt HH. Free Radic Biol Med; 2004 Oct 01; 37(7):988-97. PubMed ID: 15336315 [Abstract] [Full Text] [Related]
18. The inhibitory potency and selectivity of arginine substrate site nitric-oxide synthase inhibitors is solely determined by their affinity toward the different isoenzymes. Boer R, Ulrich WR, Klein T, Mirau B, Haas S, Baur I. Mol Pharmacol; 2000 Nov 01; 58(5):1026-34. PubMed ID: 11040050 [Abstract] [Full Text] [Related]
19. Biology and chemistry of the inhibition of nitric oxide synthases by pteridine-derivatives as therapeutic agents. Matter H, Kotsonis P. Med Res Rev; 2004 Sep 01; 24(5):662-84. PubMed ID: 15224385 [Abstract] [Full Text] [Related]
20. Structure of tetrahydrobiopterin tunes its electron transfer to the heme-dioxy intermediate in nitric oxide synthase. Wei CC, Wang ZQ, Arvai AS, Hemann C, Hille R, Getzoff ED, Stuehr DJ. Biochemistry; 2003 Feb 25; 42(7):1969-77. PubMed ID: 12590583 [Abstract] [Full Text] [Related] Page: [Next] [New Search]