These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


130 related items for PubMed ID: 10699383

  • 1. Evaluation of strength-enhancing factors of a ductile binder in direct compression of sodium bicarbonate and calcium carbonate powders.
    Mattsson S, Nyström C.
    Eur J Pharm Sci; 2000 Mar; 10(1):53-66. PubMed ID: 10699383
    [Abstract] [Full Text] [Related]

  • 2. Evaluation of critical binder properties affecting the compactibility of binary mixtures.
    Mattsson S, Nyström C.
    Drug Dev Ind Pharm; 2001 Mar; 27(3):181-94. PubMed ID: 11291198
    [Abstract] [Full Text] [Related]

  • 3. Compression shear strength and tableting behavior of microcrystalline cellulose agglomerates modulated by a solution binder (polyethylene glycol).
    Nicklasson F, Alderborn G.
    Pharm Res; 2001 Jun; 18(6):873-7. PubMed ID: 11474794
    [Abstract] [Full Text] [Related]

  • 4. The influence of particle size on the application of compression and compaction models for tableting.
    Wünsch I, Finke JH, John E, Juhnke M, Kwade A.
    Int J Pharm; 2021 Apr 15; 599():120424. PubMed ID: 33647406
    [Abstract] [Full Text] [Related]

  • 5. Impact of functionalized particle structure on roll compaction/dry granulation and tableting of calcium carbonate.
    Grote S, Kleinebudde P.
    Int J Pharm; 2018 Jun 10; 544(1):235-241. PubMed ID: 29689365
    [Abstract] [Full Text] [Related]

  • 6. The use of mercury porosimetry in assessing the effect of different binders on the pore structure and bonding properties of tablets.
    Mattsson S, Nyström C.
    Eur J Pharm Biopharm; 2001 Sep 10; 52(2):237-47. PubMed ID: 11522492
    [Abstract] [Full Text] [Related]

  • 7. Particle size distribution and evolution in tablet structure during and after compaction.
    Fichtner F, Rasmuson A, Alderborn G.
    Int J Pharm; 2005 Mar 23; 292(1-2):211-25. PubMed ID: 15725568
    [Abstract] [Full Text] [Related]

  • 8. Compactibility of agglomerated mixtures of calcium carbonate and microcrystalline cellulose.
    Garzón Serra Mde L, Villafuerte Robles L.
    Int J Pharm; 2003 Jun 04; 258(1-2):153-63. PubMed ID: 12753762
    [Abstract] [Full Text] [Related]

  • 9. Effects of interactions between powder particle size and binder viscosity on agglomerate growth mechanisms in a high shear mixer.
    Johansen A, Schaefer T.
    Eur J Pharm Sci; 2001 Jan 04; 12(3):297-309. PubMed ID: 11113649
    [Abstract] [Full Text] [Related]

  • 10. The effect of particle fragmentation and deformation on the interparticulate bond formation process during powder compaction.
    Eriksson M, Alderborn G.
    Pharm Res; 1995 Jul 04; 12(7):1031-9. PubMed ID: 7494798
    [Abstract] [Full Text] [Related]

  • 11. Roll compaction/dry granulation: effect of raw material particle size on granule and tablet properties.
    Herting MG, Kleinebudde P.
    Int J Pharm; 2007 Jun 29; 338(1-2):110-8. PubMed ID: 17324537
    [Abstract] [Full Text] [Related]

  • 12. Fast and non-destructive pore structure analysis using terahertz time-domain spectroscopy.
    Markl D, Bawuah P, Ridgway C, van den Ban S, Goodwin DJ, Ketolainen J, Gane P, Peiponen KE, Zeitler JA.
    Int J Pharm; 2018 Feb 15; 537(1-2):102-110. PubMed ID: 29247699
    [Abstract] [Full Text] [Related]

  • 13. Effects of physical properties of powder particles on binder liquid requirement and agglomerate growth mechanisms in a high shear mixer.
    Johansen A, Schaefer T.
    Eur J Pharm Sci; 2001 Sep 15; 14(2):135-47. PubMed ID: 11500259
    [Abstract] [Full Text] [Related]

  • 14. Compactibility of mixtures of calcium carbonate and microcrystalline cellulose.
    Garzón Mde L, Villafuerte L.
    Int J Pharm; 2002 Jan 01; 231(1):33-41. PubMed ID: 11719011
    [Abstract] [Full Text] [Related]

  • 15. Compaction of functionalized calcium carbonate, a porous and crystalline microparticulate material with a lamellar surface.
    Stirnimann T, Atria S, Schoelkopf J, Gane PA, Alles R, Huwyler J, Puchkov M.
    Int J Pharm; 2014 May 15; 466(1-2):266-75. PubMed ID: 24631309
    [Abstract] [Full Text] [Related]

  • 16. A methodological evaluation and predictive in silico investigation into the multi-functionality of arginine in directly compressed tablets.
    ElShaer A, Kaialy W, Akhtar N, Iyire A, Hussain T, Alany R, Mohammed AR.
    Eur J Pharm Biopharm; 2015 Oct 15; 96():272-81. PubMed ID: 26255158
    [Abstract] [Full Text] [Related]

  • 17. The granule porosity controls the loss of compactibility for both dry- and wet-processed cellulose granules but at different rate.
    Nordström J, Alderborn G.
    J Pharm Sci; 2015 Jun 15; 104(6):2029-2039. PubMed ID: 25872760
    [Abstract] [Full Text] [Related]

  • 18. The compaction properties of polyethylene glycols.
    Al-Angari AA, Kennerley JW, Newton JM.
    J Pharm Pharmacol; 1985 Mar 15; 37(3):151-3. PubMed ID: 2858559
    [Abstract] [Full Text] [Related]

  • 19. Evaluation of a novel cellulose powder as a filler-binder for direct compression of tablets.
    Pesonen T, Paronen P, Puurunen T.
    Pharm Weekbl Sci; 1989 Feb 24; 11(1):13-9. PubMed ID: 2710639
    [Abstract] [Full Text] [Related]

  • 20. The evaluation of fine-particle hydroxypropylcellulose as a roller compaction binder in pharmaceutical applications.
    Skinner GW, Harcum WW, Barnum PE, Guo JH.
    Drug Dev Ind Pharm; 1999 Oct 24; 25(10):1121-8. PubMed ID: 10529893
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.