These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


138 related items for PubMed ID: 10701862

  • 1. Native extracellular matrix induces a well-organized bipolar outgrowth pattern with neurite extension and retraction in cultured neurons.
    de Miguel FF, Vargas J.
    J Comp Neurol; 2000 Feb 21; 417(4):387-98. PubMed ID: 10701862
    [Abstract] [Full Text] [Related]

  • 2. Extracellular matrix glycoproteins inhibit neurite outgrowth of different types of identified leech neurons in culture.
    Flores-Abreu N, Vargas J, De-Miguel FF.
    Neuroscience; 2006 Feb 21; 137(4):1165-76. PubMed ID: 16359820
    [Abstract] [Full Text] [Related]

  • 3. Extracellular matrix molecules in development and regeneration of the leech CNS.
    Masuda-Nakagawa LM, Nicholls JG.
    Philos Trans R Soc Lond B Biol Sci; 1991 Mar 29; 331(1261):323-35. PubMed ID: 1713329
    [Abstract] [Full Text] [Related]

  • 4. Steps in the formation of a bipolar outgrowth pattern by cultured neurons, and their substrate dependence.
    de-Miguel FF, Vargas J.
    J Neurobiol; 2002 Feb 05; 50(2):106-17. PubMed ID: 11793358
    [Abstract] [Full Text] [Related]

  • 5. The role of matrix molecules in regeneration of leech CNS.
    Masuda-Nakagawa LM, Wiedemann C.
    J Neurobiol; 1992 Jul 05; 23(5):551-67. PubMed ID: 1279114
    [Abstract] [Full Text] [Related]

  • 6. Growth-inhibiting extracellular matrix proteins also inhibit electrical activity by reducing calcium and increasing potassium conductances.
    Vargas J, De-Miguel FF.
    Neuroscience; 2009 Jan 23; 158(2):592-601. PubMed ID: 18976697
    [Abstract] [Full Text] [Related]

  • 7. Extracellular matrix glycoproteins inhibit neurite production by cultured neurons.
    De-Miguel FF, Vargas J, Arias C, Escamilla C.
    J Comp Neurol; 2002 Feb 18; 443(4):401-11. PubMed ID: 11807847
    [Abstract] [Full Text] [Related]

  • 8. Substrate-dependent interactions of leech microglial cells and neurons in culture.
    Masuda-Nakagawa LM, Walz A, Brodbeck D, Neely MD, Grumbacher-Reinert S.
    J Neurobiol; 1994 Jan 18; 25(1):83-91. PubMed ID: 8113785
    [Abstract] [Full Text] [Related]

  • 9. Outgrowth patterns and directed growth of identified neurons induced by native substrates in culture.
    Fernández-de-Miguel F.
    J Comp Neurol; 1997 Mar 31; 380(1):1-15. PubMed ID: 9073079
    [Abstract] [Full Text] [Related]

  • 10. Contact between identified leech neurones in culture prevents retraction of neurites following electrical activity.
    von Bernhardi R.
    J Exp Biol; 1998 Apr 31; 201(Pt 7):1035-41. PubMed ID: 12968634
    [Abstract] [Full Text] [Related]

  • 11. Effects of soluble laminin on organelle transport and neurite growth in cultured mouse dorsal root ganglion neurons: difference between primary neurites and branches.
    Kohno K, Kawakami T, Hiruma H.
    J Cell Physiol; 2005 Nov 31; 205(2):253-61. PubMed ID: 15887233
    [Abstract] [Full Text] [Related]

  • 12. Membrane-bound CSPG mediates growth cone outgrowth and substrate specificity by Schwann cell contact with the DRG neuron cell body and not via growth cone contact.
    Castro C, Kuffler DP.
    Exp Neurol; 2006 Jul 31; 200(1):19-25. PubMed ID: 16530184
    [Abstract] [Full Text] [Related]

  • 13. Role of substrate and calcium in neurite retraction of leech neurons following depolarization.
    Neely MD.
    J Neurosci; 1993 Mar 31; 13(3):1292-301. PubMed ID: 8441011
    [Abstract] [Full Text] [Related]

  • 14. Role of laminin in axonal extension from olfactory receptor cells.
    Kafitz KW, Greer CA.
    J Neurobiol; 1997 Mar 31; 32(3):298-310. PubMed ID: 9058322
    [Abstract] [Full Text] [Related]

  • 15. NeuronGrowth, a software for automatic quantification of neurite and filopodial dynamics from time-lapse sequences of digital images.
    Fanti Z, Martinez-Perez ME, De-Miguel FF.
    Dev Neurobiol; 2011 Oct 31; 71(10):870-81. PubMed ID: 21913334
    [Abstract] [Full Text] [Related]

  • 16. Optimal micropattern dimensions enhance neurite outgrowth rates, lengths, and orientations.
    Song M, Uhrich KE.
    Ann Biomed Eng; 2007 Oct 31; 35(10):1812-20. PubMed ID: 17616821
    [Abstract] [Full Text] [Related]

  • 17. Extension and retraction of axonal projections by some developing neurons in the leech depends upon the existence of neighboring homologues. II. The AP and AE neurons.
    Gao WQ, Macagno ER.
    J Neurobiol; 1987 May 31; 18(3):295-313. PubMed ID: 3298543
    [Abstract] [Full Text] [Related]

  • 18. Local influence of substrate molecules in determining distinctive growth patterns of identified neurons in culture.
    Grumbacher-Reinert S.
    Proc Natl Acad Sci U S A; 1989 Sep 31; 86(18):7270-4. PubMed ID: 2780572
    [Abstract] [Full Text] [Related]

  • 19. Effects of nonenzymatic glycosylation of extracellular matrix components on cell survival and sensory neurite extension in cell culture.
    Luo ZJ, King RH, Lewin J, Thomas PK.
    J Neurol; 2002 Apr 31; 249(4):424-31. PubMed ID: 11967647
    [Abstract] [Full Text] [Related]

  • 20. A two-phase growth strategy in cultured neuronal networks as reflected by the distribution of neurite branching angles.
    Shefi O, Golebowicz S, Ben-Jacob E, Ayali A.
    J Neurobiol; 2005 Feb 15; 62(3):361-8. PubMed ID: 15514989
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.