These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
26. Regulation of the rhaEWRBMA Operon Involved in l-Rhamnose Catabolism through Two Transcriptional Factors, RhaR and CcpA, in Bacillus subtilis. Hirooka K, Kodoi Y, Satomura T, Fujita Y. J Bacteriol; 2015 Dec 28; 198(5):830-45. PubMed ID: 26712933 [Abstract] [Full Text] [Related]
27. High-affinity l-malate transporter DcuE of Actinobacillus succinogenes catalyses reversible exchange of C4-dicarboxylates. Rhie MN, Cho YB, Lee YJ, Kim OB. Environ Microbiol Rep; 2019 Apr 28; 11(2):129-139. PubMed ID: 30452121 [Abstract] [Full Text] [Related]
29. CitA (citrate) and DcuS (C4-dicarboxylate) sensor kinases in thermophilic Geobacillus kaustophilus and Geobacillus thermodenitrificans. Graf S, Broll C, Wissig J, Strecker A, Parowatkin M, Unden G. Microbiology (Reading); 2016 Jan 28; 162(1):127-137. PubMed ID: 26346610 [Abstract] [Full Text] [Related]
30. Dicarboxylic acid transport in membrane vesicles from Bacillus subtilis. Bisschop A, Doddema H, Konings WN. J Bacteriol; 1975 Nov 28; 124(2):613-22. PubMed ID: 171251 [Abstract] [Full Text] [Related]
31. The citrulline biosynthetic operon, argC-F, and a ribose transport operon, rbs, from Bacillus subtilis are negatively regulated by Spo0A. O'Reilly M, Woodson K, Dowds BC, Devine KM. Mol Microbiol; 1994 Jan 28; 11(1):87-98. PubMed ID: 7511775 [Abstract] [Full Text] [Related]
32. Identification of a gene encoding a transporter essential for utilization of C4 dicarboxylates in Corynebacterium glutamicum. Teramoto H, Shirai T, Inui M, Yukawa H. Appl Environ Microbiol; 2008 Sep 28; 74(17):5290-6. PubMed ID: 18586971 [Abstract] [Full Text] [Related]
33. Identification of C(4)-dicarboxylate transport systems in Pseudomonas aeruginosa PAO1. Valentini M, Storelli N, Lapouge K. J Bacteriol; 2011 Sep 28; 193(17):4307-16. PubMed ID: 21725012 [Abstract] [Full Text] [Related]
34. Two highly similar multidrug transporters of Bacillus subtilis whose expression is differentially regulated. Ahmed M, Lyass L, Markham PN, Taylor SS, Vázquez-Laslop N, Neyfakh AA. J Bacteriol; 1995 Jul 28; 177(14):3904-10. PubMed ID: 7608059 [Abstract] [Full Text] [Related]
35. Hyperphosphorylation of DegU cancels CcpA-dependent catabolite repression of rocG in Bacillus subtilis. Tanaka K, Iwasaki K, Morimoto T, Matsuse T, Hasunuma T, Takenaka S, Chumsakul O, Ishikawa S, Ogasawara N, Yoshida K. BMC Microbiol; 2015 Feb 22; 15():43. PubMed ID: 25880922 [Abstract] [Full Text] [Related]
36. Manganese homeostasis in Bacillus subtilis is regulated by MntR, a bifunctional regulator related to the diphtheria toxin repressor family of proteins. Que Q, Helmann JD. Mol Microbiol; 2000 Mar 22; 35(6):1454-68. PubMed ID: 10760146 [Abstract] [Full Text] [Related]
37. Regulators of the Bacillus subtilis cydABCD operon: identification of a negative regulator, CcpA, and a positive regulator, ResD. Puri-Taneja A, Schau M, Chen Y, Hulett FM. J Bacteriol; 2007 May 22; 189(9):3348-58. PubMed ID: 17322317 [Abstract] [Full Text] [Related]
38. Properties of an inducible C 4 -dicarboxylic acid transport system in Bacillus subtilis. Ghei OK, Kay WW. J Bacteriol; 1973 Apr 22; 114(1):65-79. PubMed ID: 4633350 [Abstract] [Full Text] [Related]
39. Two MerR homologues that affect copper induction of the Bacillus subtilis copZA operon. Gaballa A, Cao M, Helmann JD. Microbiology (Reading); 2003 Dec 22; 149(Pt 12):3413-3421. PubMed ID: 14663075 [Abstract] [Full Text] [Related]
40. Four additional genes in the sigB operon of Bacillus subtilis that control activity of the general stress factor sigma B in response to environmental signals. Wise AA, Price CW. J Bacteriol; 1995 Jan 22; 177(1):123-33. PubMed ID: 8002610 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]