These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Effects of substitutions D73E, D73N, D103N and V106M on signaling and pH titration of sensory rhodopsin II. Zhu J, Spudich EN, Alam M, Spudich JL. Photochem Photobiol; 1997 Dec; 66(6):788-91. PubMed ID: 9421965 [Abstract] [Full Text] [Related]
3. The Schiff base counterion of bacteriorhodopsin is protonated in sensory rhodopsin I: spectroscopic and functional characterization of the mutated proteins D76N and D76A. Rath P, Olson KD, Spudich JL, Rothschild KJ. Biochemistry; 1994 May 10; 33(18):5600-6. PubMed ID: 8180184 [Abstract] [Full Text] [Related]
4. Constitutive signaling by the phototaxis receptor sensory rhodopsin II from disruption of its protonated Schiff base-Asp-73 interhelical salt bridge. Spudich EN, Zhang W, Alam M, Spudich JL. Proc Natl Acad Sci U S A; 1997 May 13; 94(10):4960-5. PubMed ID: 9144172 [Abstract] [Full Text] [Related]
5. Structural changes of pharaonis phoborhodopsin upon photoisomerization of the retinal chromophore: infrared spectral comparison with bacteriorhodopsin. Kandori H, Shimono K, Sudo Y, Iwamoto M, Shichida Y, Kamo N. Biochemistry; 2001 Aug 07; 40(31):9238-46. PubMed ID: 11478891 [Abstract] [Full Text] [Related]
6. Positioning proton-donating residues to the Schiff-base accelerates the M-decay of pharaonis phoborhodopsin expressed in Escherichia coli. Iwamoto M, Shimono K, Sumi M, Kamo N. Biophys Chem; 1999 Jun 28; 79(3):187-92. PubMed ID: 10443011 [Abstract] [Full Text] [Related]
9. A pharaonis phoborhodopsin mutant with the same retinal binding site residues as in bacteriorhodopsin. Shimono K, Furutani Y, Kandori H, Kamo N. Biochemistry; 2002 May 21; 41(20):6504-9. PubMed ID: 12009914 [Abstract] [Full Text] [Related]
10. Protonation changes during the photocycle of sensory rhodopsin II from Natronobacterium pharaonis. Engelhard M, Scharf B, Siebert F. FEBS Lett; 1996 Oct 21; 395(2-3):195-8. PubMed ID: 8898094 [Abstract] [Full Text] [Related]
11. Proton circulation during the photocycle of sensory rhodopsin II. Sasaki J, Spudich JL. Biophys J; 1999 Oct 21; 77(4):2145-52. PubMed ID: 10512834 [Abstract] [Full Text] [Related]
12. Proton transport by sensory rhodopsins and its modulation by transducer-binding. Sasaki J, Spudich JL. Biochim Biophys Acta; 2000 Aug 30; 1460(1):230-9. PubMed ID: 10984603 [Abstract] [Full Text] [Related]
13. FTIR spectroscopy of the M photointermediate in pharaonis rhoborhodopsin. Furutani Y, Iwamoto M, Shimono K, Kamo N, Kandori H. Biophys J; 2002 Dec 30; 83(6):3482-9. PubMed ID: 12496114 [Abstract] [Full Text] [Related]
14. Early photocycle structural changes in a bacteriorhodopsin mutant engineered to transmit photosensory signals. Sudo Y, Furutani Y, Spudich JL, Kandori H. J Biol Chem; 2007 May 25; 282(21):15550-8. PubMed ID: 17387174 [Abstract] [Full Text] [Related]
15. Chromophore-protein-water interactions in the L intermediate of bacteriorhodopsin: FTIR study of the photoreaction of L at 80 K. Maeda A, Tomson FL, Gennis RB, Ebrey TG, Balashov SP. Biochemistry; 1999 Jul 06; 38(27):8800-7. PubMed ID: 10393556 [Abstract] [Full Text] [Related]
19. A transporter converted into a sensor, a phototaxis signaling mutant of bacteriorhodopsin at 3.0 Å. Spudich EN, Ozorowski G, Schow EV, Tobias DJ, Spudich JL, Luecke H. J Mol Biol; 2012 Jan 20; 415(3):455-63. PubMed ID: 22123198 [Abstract] [Full Text] [Related]
20. Structural changes due to the deprotonation of the proton release group in the M-photointermediate of bacteriorhodopsin as revealed by time-resolved FTIR spectroscopy. Morgan JE, Vakkasoglu AS, Lugtenburg J, Gennis RB, Maeda A. Biochemistry; 2008 Nov 04; 47(44):11598-605. PubMed ID: 18837559 [Abstract] [Full Text] [Related] Page: [Next] [New Search]