These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


108 related items for PubMed ID: 10724915

  • 1. A new way for the analysis of the exocytosis.
    Sánchez JL, Brioso MA, Segura F, Borges R.
    Stud Health Technol Inform; 1999; 68():400-5. PubMed ID: 10724915
    [Abstract] [Full Text] [Related]

  • 2. Quantitative investigations of amperometric spike feet suggest different controlling factors of the fusion pore in exocytosis at chromaffin cells.
    Amatore C, Arbault S, Bonifas I, Guille M.
    Biophys Chem; 2009 Aug; 143(3):124-31. PubMed ID: 19501951
    [Abstract] [Full Text] [Related]

  • 3. On-chip amperometric measurement of quantal catecholamine release using transparent indium tin oxide electrodes.
    Sun X, Gillis KD.
    Anal Chem; 2006 Apr 15; 78(8):2521-5. PubMed ID: 16615759
    [Abstract] [Full Text] [Related]

  • 4. Relationship between amperometric pre-spike feet and secretion granule composition in chromaffin cells: an overview.
    Amatore C, Arbault S, Bonifas I, Guille M, Lemaître F, Verchier Y.
    Biophys Chem; 2007 Sep 15; 129(2-3):181-9. PubMed ID: 17587484
    [Abstract] [Full Text] [Related]

  • 5. Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells.
    Chow RH, von Rüden L, Neher E.
    Nature; 1992 Mar 05; 356(6364):60-3. PubMed ID: 1538782
    [Abstract] [Full Text] [Related]

  • 6. The exocytotic event in chromaffin cells revealed by patch amperometry.
    Albillos A, Dernick G, Horstmann H, Almers W, Alvarez de Toledo G, Lindau M.
    Nature; 1997 Oct 02; 389(6650):509-12. PubMed ID: 9333242
    [Abstract] [Full Text] [Related]

  • 7. Automatic analysis for amperometrical recordings of exocytosis.
    Segura F, Brioso MA, Gómez JF, Machado JD, Borges R.
    J Neurosci Methods; 2000 Nov 30; 103(2):151-6. PubMed ID: 11084207
    [Abstract] [Full Text] [Related]

  • 8. Time course of release of catecholamines from individual vesicles during exocytosis at adrenal medullary cells.
    Wightman RM, Schroeder TJ, Finnegan JM, Ciolkowski EL, Pihel K.
    Biophys J; 1995 Jan 30; 68(1):383-90. PubMed ID: 7711264
    [Abstract] [Full Text] [Related]

  • 9. Mechanisms of exocytosis.
    Sugita S.
    Acta Physiol (Oxf); 2008 Feb 30; 192(2):185-93. PubMed ID: 18005396
    [Abstract] [Full Text] [Related]

  • 10. Neurotransmitter release from bovine adrenal chromaffin cells is modulated by capacitative Ca(2+)entry driven by depleted internal Ca(2+)stores.
    Zerbes M, Clark CL, Powis DA.
    Cell Calcium; 2001 Jan 30; 29(1):49-58. PubMed ID: 11133355
    [Abstract] [Full Text] [Related]

  • 11. Correlation between vesicle quantal size and fusion pore release in chromaffin cell exocytosis.
    Amatore C, Arbault S, Bonifas I, Bouret Y, Erard M, Ewing AG, Sombers LA.
    Biophys J; 2005 Jun 30; 88(6):4411-20. PubMed ID: 15792983
    [Abstract] [Full Text] [Related]

  • 12. Regulation of exocytosis in chromaffin cells by trans-insertion of lysophosphatidylcholine and arachidonic acid into the outer leaflet of the cell membrane.
    Amatore C, Arbault S, Bouret Y, Guille M, Lemaître F, Verchier Y.
    Chembiochem; 2006 Dec 30; 7(12):1998-2003. PubMed ID: 17086558
    [Abstract] [Full Text] [Related]

  • 13. A microfluidic cell trap device for automated measurement of quantal catecholamine release from cells.
    Gao Y, Bhattacharya S, Chen X, Barizuddin S, Gangopadhyay S, Gillis KD.
    Lab Chip; 2009 Dec 07; 9(23):3442-6. PubMed ID: 19904414
    [Abstract] [Full Text] [Related]

  • 14. Single-vesicle catecholamine release has greater quantal content and faster kinetics in chromaffin cells from hypertensive, as compared with normotensive, rats.
    Miranda-Ferreira R, de Pascual R, de Diego AM, Caricati-Neto A, Gandía L, Jurkiewicz A, García AG.
    J Pharmacol Exp Ther; 2008 Feb 07; 324(2):685-93. PubMed ID: 17962518
    [Abstract] [Full Text] [Related]

  • 15. Calcium dynamics in bovine adrenal medulla chromaffin cell secretory granules.
    Santodomingo J, Vay L, Camacho M, Hernández-Sanmiguel E, Fonteriz RI, Lobatón CD, Montero M, Moreno A, Alvarez J.
    Eur J Neurosci; 2008 Oct 07; 28(7):1265-74. PubMed ID: 18973554
    [Abstract] [Full Text] [Related]

  • 16. Dual role of calbindin-D28K in vesicular catecholamine release from mouse chromaffin cells.
    Westerink RH, Rook MB, Beekwilder JP, Wadman WJ.
    J Neurochem; 2006 Oct 07; 99(2):628-40. PubMed ID: 16824046
    [Abstract] [Full Text] [Related]

  • 17. Control of fusion pore dynamics during exocytosis by Munc18.
    Fisher RJ, Pevsner J, Burgoyne RD.
    Science; 2001 Feb 02; 291(5505):875-8. PubMed ID: 11157167
    [Abstract] [Full Text] [Related]

  • 18. A physiological view of the central and peripheral mechanisms that regulate the release of catecholamines at the adrenal medulla.
    de Diego AM, Gandía L, García AG.
    Acta Physiol (Oxf); 2008 Feb 02; 192(2):287-301. PubMed ID: 18005392
    [Abstract] [Full Text] [Related]

  • 19. Invariance of exocytotic events detected by amperometry as a function of the carbon fiber microelectrode diameter.
    Amatore C, Arbault S, Bouret Y, Guille M, Lemaître F, Verchier Y.
    Anal Chem; 2009 Apr 15; 81(8):3087-93. PubMed ID: 19290664
    [Abstract] [Full Text] [Related]

  • 20. A rapid exocytosis mode in chromaffin cells with a neuronal phenotype.
    Ardiles AO, Maripillán J, Lagos VL, Toro R, Mora IG, Villarroel L, Alés E, Borges R, Cárdenas AM.
    J Neurochem; 2006 Oct 15; 99(1):29-41. PubMed ID: 16889641
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.