These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
185 related items for PubMed ID: 10748065
1. Localization and characterization of the calsequestrin-binding domain of triadin 1. Evidence for a charged beta-strand in mediating the protein-protein interaction. Kobayashi YM, Alseikhan BA, Jones LR. J Biol Chem; 2000 Jun 09; 275(23):17639-46. PubMed ID: 10748065 [Abstract] [Full Text] [Related]
2. Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane. Zhang L, Kelley J, Schmeisser G, Kobayashi YM, Jones LR. J Biol Chem; 1997 Sep 12; 272(37):23389-97. PubMed ID: 9287354 [Abstract] [Full Text] [Related]
3. Interaction of HRC (histidine-rich Ca(2+)-binding protein) and triadin in the lumen of sarcoplasmic reticulum. Lee HG, Kang H, Kim DH, Park WJ. J Biol Chem; 2001 Oct 26; 276(43):39533-8. PubMed ID: 11504710 [Abstract] [Full Text] [Related]
4. Association of triadin with the ryanodine receptor and calsequestrin in the lumen of the sarcoplasmic reticulum. Guo W, Campbell KP. J Biol Chem; 1995 Apr 21; 270(16):9027-30. PubMed ID: 7721813 [Abstract] [Full Text] [Related]
5. Negatively charged amino acids within the intraluminal loop of ryanodine receptor are involved in the interaction with triadin. Lee JM, Rho SH, Shin DW, Cho C, Park WJ, Eom SH, Ma J, Kim DH. J Biol Chem; 2004 Feb 20; 279(8):6994-7000. PubMed ID: 14638677 [Abstract] [Full Text] [Related]
6. Purification, primary structure, and immunological characterization of the 26-kDa calsequestrin binding protein (junctin) from cardiac junctional sarcoplasmic reticulum. Jones LR, Zhang L, Sanborn K, Jorgensen AO, Kelley J. J Biol Chem; 1995 Dec 22; 270(51):30787-96. PubMed ID: 8530521 [Abstract] [Full Text] [Related]
7. Characterization of Ca(2+)-Dependent Protein-Protein Interactions within the Ca(2+) Release Units of Cardiac Sarcoplasmic Reticulum. Rani S, Park CS, Sreenivasaiah PK, Kim DH. Mol Cells; 2016 Feb 22; 39(2):149-55. PubMed ID: 26674963 [Abstract] [Full Text] [Related]
8. Triadin binding to the C-terminal luminal loop of the ryanodine receptor is important for skeletal muscle excitation contraction coupling. Goonasekera SA, Beard NA, Groom L, Kimura T, Lyfenko AD, Rosenfeld A, Marty I, Dulhunty AF, Dirksen RT. J Gen Physiol; 2007 Oct 22; 130(4):365-78. PubMed ID: 17846166 [Abstract] [Full Text] [Related]
9. Calsequestrin and the calcium release channel of skeletal and cardiac muscle. Beard NA, Laver DR, Dulhunty AF. Prog Biophys Mol Biol; 2004 May 22; 85(1):33-69. PubMed ID: 15050380 [Abstract] [Full Text] [Related]
10. The asp-rich region at the carboxyl-terminus of calsequestrin binds to Ca(2+) and interacts with triadin. Shin DW, Ma J, Kim DH. FEBS Lett; 2000 Dec 08; 486(2):178-82. PubMed ID: 11113462 [Abstract] [Full Text] [Related]
11. Identification of triadin 1 as the predominant triadin isoform expressed in mammalian myocardium. Kobayashi YM, Jones LR. J Biol Chem; 1999 Oct 01; 274(40):28660-8. PubMed ID: 10497235 [Abstract] [Full Text] [Related]
12. Biochemical characterization and molecular cloning of cardiac triadin. Guo W, Jorgensen AO, Jones LR, Campbell KP. J Biol Chem; 1996 Jan 05; 271(1):458-65. PubMed ID: 8550602 [Abstract] [Full Text] [Related]
13. Calsequestrin binds to monomeric and complexed forms of key calcium-handling proteins in native sarcoplasmic reticulum membranes from rabbit skeletal muscle. Glover L, Culligan K, Cala S, Mulvey C, Ohlendieck K. Biochim Biophys Acta; 2001 Dec 01; 1515(2):120-32. PubMed ID: 11718668 [Abstract] [Full Text] [Related]
14. Inefficient glycosylation leads to high steady-state levels of actively degrading cardiac triadin-1. Milstein ML, McFarland TP, Marsh JD, Cala SE. J Biol Chem; 2008 Jan 25; 283(4):1929-35. PubMed ID: 18025088 [Abstract] [Full Text] [Related]
15. Junctin and triadin each activate skeletal ryanodine receptors but junctin alone mediates functional interactions with calsequestrin. Wei L, Gallant EM, Dulhunty AF, Beard NA. Int J Biochem Cell Biol; 2009 Nov 25; 41(11):2214-24. PubMed ID: 19398037 [Abstract] [Full Text] [Related]
16. Three residues in the luminal domain of triadin impact on Trisk 95 activation of skeletal muscle ryanodine receptors. Wium E, Dulhunty AF, Beard NA. Pflugers Arch; 2016 Nov 25; 468(11-12):1985-1994. PubMed ID: 27595738 [Abstract] [Full Text] [Related]
17. Regulation of ryanodine receptors by calsequestrin: effect of high luminal Ca2+ and phosphorylation. Beard NA, Casarotto MG, Wei L, Varsányi M, Laver DR, Dulhunty AF. Biophys J; 2005 May 25; 88(5):3444-54. PubMed ID: 15731387 [Abstract] [Full Text] [Related]
18. The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium. Györke I, Hester N, Jones LR, Györke S. Biophys J; 2004 Apr 25; 86(4):2121-8. PubMed ID: 15041652 [Abstract] [Full Text] [Related]
19. Phosphorylation of skeletal muscle calsequestrin enhances its Ca2+ binding capacity and promotes its association with junctin. Beard NA, Wei L, Cheung SN, Kimura T, Varsányi M, Dulhunty AF. Cell Calcium; 2008 Oct 25; 44(4):363-73. PubMed ID: 19230141 [Abstract] [Full Text] [Related]
20. Binding sites of monoclonal antibodies and dihydropyridine receptor alpha 1 subunit cytoplasmic II-III loop on skeletal muscle triadin fusion peptides. Fan H, Brandt NR, Peng M, Schwartz A, Caswell AH. Biochemistry; 1995 Nov 14; 34(45):14893-901. PubMed ID: 7578101 [Abstract] [Full Text] [Related] Page: [Next] [New Search]