These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


159 related items for PubMed ID: 10753443

  • 1. NADH-Regulated metabolic model for growth of Methylosinus trichosporiumOB3b. Cometabolic degradation of trichloroethene and optimization of bioreactor system performance.
    Sipkema EM, de Koning W, Ganzeveld KJ, Janssen DB, Beenackers AA.
    Biotechnol Prog; 2000; 16(2):189-98. PubMed ID: 10753443
    [Abstract] [Full Text] [Related]

  • 2. Development and mathematical modeling of a two-stage reactor system for trichloroethylene degradation using Methylosinus trichosporium OB3b.
    Hwang JW, Choi YB, Park S, Choi CY, Lee EY.
    Biodegradation; 2007 Feb; 18(1):91-101. PubMed ID: 16467965
    [Abstract] [Full Text] [Related]

  • 3. Kinetics and modeling of reductive dechlorination at high PCE and TCE concentrations.
    Yu S, Semprini L.
    Biotechnol Bioeng; 2004 Nov 20; 88(4):451-64. PubMed ID: 15384053
    [Abstract] [Full Text] [Related]

  • 4. NADH-Regulated metabolic model for growth of Methylosinus trichosporium OB3b. Model presentation, parameter estimation, and model validation.
    Sipkema EM, de Koning W, Ganzeveld KJ, Janssen DB, Beenackers AA.
    Biotechnol Prog; 2000 Nov 20; 16(2):176-88. PubMed ID: 10753442
    [Abstract] [Full Text] [Related]

  • 5. Methanol suppression of trichloroethylene degradation by Methylosinus trichosporium (OB3b) and methane-oxidizing mixed cultures.
    Eng W, Palumbo AV, Sriharan S, Strandberg GW.
    Appl Biochem Biotechnol; 1991 Nov 20; 28-29():887-99. PubMed ID: 1929390
    [Abstract] [Full Text] [Related]

  • 6. Trichloroethene degradation in a two-step system by methylosinus trichosporium OB3b. Optimization of system performance: use of formate and methane.
    Sipkema EM, de Koning W, Van Hylckama Vlieg JE, Ganzeveld KJ, Janssen DB, Beenackers AA.
    Biotechnol Bioeng; 1999 Apr 05; 63(1):56-68. PubMed ID: 10099581
    [Abstract] [Full Text] [Related]

  • 7. Methanotrophs, Methylosinus trichosporium OB3b, sMMO, and their application to bioremediation.
    Sullivan JP, Dickinson D, Chase HA.
    Crit Rev Microbiol; 1998 Apr 05; 24(4):335-73. PubMed ID: 9887367
    [Abstract] [Full Text] [Related]

  • 8. Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida.
    Chen YM, Lin TF, Huang C, Lin JC.
    Chemosphere; 2008 Aug 05; 72(11):1671-80. PubMed ID: 18586301
    [Abstract] [Full Text] [Related]

  • 9. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS, Dhagat NN.
    Indian J Environ Health; 2001 Apr 05; 43(2):1-82. PubMed ID: 12397675
    [Abstract] [Full Text] [Related]

  • 10. Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida.
    Chen YM, Lin TF, Huang C, Lin JC, Hsieh FM.
    J Hazard Mater; 2007 Sep 30; 148(3):660-70. PubMed ID: 17434262
    [Abstract] [Full Text] [Related]

  • 11. Production of soluble methane monooxygenase during growth of Methylosinus trichosporium on methanol.
    Yu Y, Ramsay JA, Ramsay BA.
    J Biotechnol; 2009 Jan 01; 139(1):78-83. PubMed ID: 18955091
    [Abstract] [Full Text] [Related]

  • 12. Biological removal of the xenobiotic trichloroethylene (TCE) through cometabolism in nitrifying systems.
    Kocamemi BA, Ceçen F.
    Bioresour Technol; 2010 Jan 01; 101(1):430-3. PubMed ID: 19729301
    [Abstract] [Full Text] [Related]

  • 13. Measurement and modeling of multiple substrate oxidation by methanotrophs at 20 degrees C.
    Yoon S, Semrau JD.
    FEMS Microbiol Lett; 2008 Oct 01; 287(2):156-62. PubMed ID: 18771422
    [Abstract] [Full Text] [Related]

  • 14. Stoichiometry and kinetics of the PHB-producing Type II methanotrophs Methylosinus trichosporium OB3b and Methylocystis parvus OBBP.
    Rostkowski KH, Pfluger AR, Criddle CS.
    Bioresour Technol; 2013 Mar 01; 132():71-7. PubMed ID: 23395757
    [Abstract] [Full Text] [Related]

  • 15. Dechlorination kinetics of TCE at toxic TCE concentrations: Assessment of different models.
    Haest PJ, Springael D, Smolders E.
    Water Res; 2010 Jan 01; 44(1):331-9. PubMed ID: 19818985
    [Abstract] [Full Text] [Related]

  • 16. Cometabolic degradation of trichloroethylene by Pseudomonas cepacia G4 in a chemostat with toluene as the primary substrate.
    Landa AS, Sipkema EM, Weijma J, Beenackers AA, Dolfing J, Janssen DB.
    Appl Environ Microbiol; 1994 Sep 01; 60(9):3368-74. PubMed ID: 7524444
    [Abstract] [Full Text] [Related]

  • 17. A hollow-fiber membrane bioreactor for the removal of trichloroethylene from the vapor phase.
    Pressman JG, Georgiou G, Speitel GE.
    Biotechnol Bioeng; 2000 Jun 05; 68(5):548-56. PubMed ID: 10797241
    [Abstract] [Full Text] [Related]

  • 18. Kinetics of chlorinated hydrocarbon degradation by Methylosinus trichosporium OB3b and toxicity of trichloroethylene.
    Oldenhuis R, Oedzes JY, van der Waarde JJ, Janssen DB.
    Appl Environ Microbiol; 1991 Jan 05; 57(1):7-14. PubMed ID: 2036023
    [Abstract] [Full Text] [Related]

  • 19. Mixed pollutant degradation by Methylosinus trichosporium OB3b expressing either soluble or particulate methane monooxygenase: can the tortoise beat the hare?
    Lee SW, Keeney DR, Lim DH, Dispirito AA, Semrau JD.
    Appl Environ Microbiol; 2006 Dec 05; 72(12):7503-9. PubMed ID: 17012599
    [Abstract] [Full Text] [Related]

  • 20. Trichloroethylene (TCE) removal in a single pulse suspension bioreactor.
    Volcík V, Hoffmann J, Růzicka J, Sergejevová M.
    J Environ Manage; 2005 Mar 05; 74(4):293-304. PubMed ID: 15737454
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.