These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
300 related items for PubMed ID: 10769139
1. Role of metal ions in the reaction catalyzed by L-ribulose-5-phosphate 4-epimerase. Lee LV, Poyner RR, Vu MV, Cleland WW. Biochemistry; 2000 Apr 25; 39(16):4821-30. PubMed ID: 10769139 [Abstract] [Full Text] [Related]
2. 13C and deuterium isotope effects suggest an aldol cleavage mechanism for L-ribulose-5-phosphate 4-epimerase. Lee LV, Vu MV, Cleland WW. Biochemistry; 2000 Apr 25; 39(16):4808-20. PubMed ID: 10769138 [Abstract] [Full Text] [Related]
3. Epimerization via carbon-carbon bond cleavage. L-ribulose-5-phosphate 4-epimerase as a masked class II aldolase. Johnson AE, Tanner ME. Biochemistry; 1998 Apr 21; 37(16):5746-54. PubMed ID: 9548961 [Abstract] [Full Text] [Related]
7. Selective substitution in vitro of an intrinsic zinc of Escherichia coli RNA polymerase with various divalent metals. Chatterji D, Wu FY. Biochemistry; 1982 Sep 14; 21(19):4651-6. PubMed ID: 6753922 [Abstract] [Full Text] [Related]
8. Perturbing the metal site in D-xylose isomerase. Effect of mutations of His-220 on enzyme stability. Cha J, Cho Y, Whitaker RD, Carrell HL, Glusker JP, Karplus PA, Batt CA. J Biol Chem; 1994 Jan 28; 269(4):2687-94. PubMed ID: 8300598 [Abstract] [Full Text] [Related]
10. A revised mechanism for the alkaline phosphatase reaction involving three metal ions. Stec B, Holtz KM, Kantrowitz ER. J Mol Biol; 2000 Jun 23; 299(5):1303-11. PubMed ID: 10873454 [Abstract] [Full Text] [Related]
11. Electron paramagnetic resonance of D-xylose isomerase: evidence for metal ion movement induced by binding of cyclic substrates and inhibitors. Bogumil R, Kappl R, Hüttermann J, Witzel H. Biochemistry; 1997 Mar 04; 36(9):2345-52. PubMed ID: 9054539 [Abstract] [Full Text] [Related]
13. Detection of metal binding to bovine inositol monophosphatase by changes in the near and far ultraviolet regions of the CD spectrum. Rees-Milton K, Thorne M, Greasley P, Churchich J, Gore MG. Eur J Biochem; 1997 May 15; 246(1):211-7. PubMed ID: 9210486 [Abstract] [Full Text] [Related]
16. A functional role for a flexible loop containing Glu182 in the class II fructose-1,6-bisphosphate aldolase from Escherichia coli. Zgiby S, Plater AR, Bates MA, Thomson GJ, Berry A. J Mol Biol; 2002 Jan 11; 315(2):131-40. PubMed ID: 11779234 [Abstract] [Full Text] [Related]
17. Mutational analysis of divalent metal ion binding in the active site of class II α-mannosidase from Sulfolobus solfataricus. Hansen DK, Webb H, Nielsen JW, Harris P, Winther JR, Willemoës M. Biochemistry; 2015 Mar 24; 54(11):2032-9. PubMed ID: 25751413 [Abstract] [Full Text] [Related]
18. Metal specificity is correlated with two crucial active site residues in Escherichia coli alkaline phosphatase. Wang J, Stieglitz KA, Kantrowitz ER. Biochemistry; 2005 Jun 14; 44(23):8378-86. PubMed ID: 15938627 [Abstract] [Full Text] [Related]
19. Unraveling the substrate-metal binding site of ferrochelatase: an X-ray absorption spectroscopic study. Ferreira GC, Franco R, Mangravita A, George GN. Biochemistry; 2002 Apr 16; 41(15):4809-18. PubMed ID: 11939775 [Abstract] [Full Text] [Related]
20. Structure and metal binding properties of ZnuA, a periplasmic zinc transporter from Escherichia coli. Yatsunyk LA, Easton JA, Kim LR, Sugarbaker SA, Bennett B, Breece RM, Vorontsov II, Tierney DL, Crowder MW, Rosenzweig AC. J Biol Inorg Chem; 2008 Feb 16; 13(2):271-88. PubMed ID: 18027003 [Abstract] [Full Text] [Related] Page: [Next] [New Search]