These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
123 related items for PubMed ID: 10774757
1. Yeast asparagine (Asn) tRNA without Q base promotes eukaryotic frameshifting more efficiently than mammalian Asn tRNAs with or without Q base. Carlson BA, Kwon SY, Lee BJ, Hatfield D. Mol Cells; 2000 Feb 29; 10(1):113-8. PubMed ID: 10774757 [Abstract] [Full Text] [Related]
2. Expression of a coronavirus ribosomal frameshift signal in Escherichia coli: influence of tRNA anticodon modification on frameshifting. Brierley I, Meredith MR, Bloys AJ, Hagervall TG. J Mol Biol; 1997 Jul 18; 270(3):360-73. PubMed ID: 9237903 [Abstract] [Full Text] [Related]
3. Ribosomal frameshifting in response to hypomodified tRNAs in Xenopus oocytes. Carlson BA, Lee BJ, Hatfield DL. Biochem Biophys Res Commun; 2008 Oct 10; 375(1):86-90. PubMed ID: 18675785 [Abstract] [Full Text] [Related]
4. Transfer RNA modification status influences retroviral ribosomal frameshifting. Carlson BA, Kwon SY, Chamorro M, Oroszlan S, Hatfield DL, Lee BJ. Virology; 1999 Mar 01; 255(1):2-8. PubMed ID: 10049815 [Abstract] [Full Text] [Related]
5. The Q-base of asparaginyl-tRNA is dispensable for efficient -1 ribosomal frameshifting in eukaryotes. Marczinke B, Hagervall T, Brierley I. J Mol Biol; 2000 Jan 14; 295(2):179-91. PubMed ID: 10623518 [Abstract] [Full Text] [Related]
6. Enzymatic formation of queuosine and of glycosyl queuosine in yeast tRNAs microinjected into Xenopus laevis oocytes. The effect of the anticodon loop sequence. Haumont E, Droogmans L, Grosjean H. Eur J Biochem; 1987 Oct 01; 168(1):219-25. PubMed ID: 3117541 [Abstract] [Full Text] [Related]
7. Queuosine modification protects cognate tRNAs against ribonuclease cleavage. Wang X, Matuszek Z, Huang Y, Parisien M, Dai Q, Clark W, Schwartz MH, Pan T. RNA; 2018 Oct 01; 24(10):1305-1313. PubMed ID: 29970597 [Abstract] [Full Text] [Related]
8. Detection and quantification of glycosylated queuosine modified tRNAs by acid denaturing and APB gels. Zhang W, Xu R, Matuszek Ż, Cai Z, Pan T. RNA; 2020 Sep 01; 26(9):1291-1298. PubMed ID: 32439717 [Abstract] [Full Text] [Related]
9. Analysis of queuosine and 2-thio tRNA modifications by high throughput sequencing. Katanski CD, Watkins CP, Zhang W, Reyer M, Miller S, Pan T. Nucleic Acids Res; 2022 Sep 23; 50(17):e99. PubMed ID: 35713550 [Abstract] [Full Text] [Related]
10. Crystal structure of glutamyl-queuosine tRNAAsp synthetase complexed with L-glutamate: structural elements mediating tRNA-independent activation of glutamate and glutamylation of tRNAAsp anticodon. Blaise M, Olieric V, Sauter C, Lorber B, Roy B, Karmakar S, Banerjee R, Becker HD, Kern D. J Mol Biol; 2008 Sep 19; 381(5):1224-37. PubMed ID: 18602926 [Abstract] [Full Text] [Related]
11. Determination of queuosine derivatives by reverse-phase liquid chromatography for the hypomodification study of Q-bearing tRNAs from various mammal liver cells. Costa A, Païs de Barros JP, Keith G, Baranowski W, Desgrès J. J Chromatogr B Analyt Technol Biomed Life Sci; 2004 Mar 05; 801(2):237-47. PubMed ID: 14751792 [Abstract] [Full Text] [Related]
12. The anticodon and discriminator base are important for aminoacylation of Escherichia coli tRNA(Asn). Li S, Pelka H, Schulman LH. J Biol Chem; 1993 Aug 25; 268(24):18335-9. PubMed ID: 8349709 [Abstract] [Full Text] [Related]
13. Quantitative probing of glycosylated queuosine modifications in tRNA. Zhang W, Pan T. Methods Enzymol; 2021 Aug 25; 658():73-82. PubMed ID: 34517960 [Abstract] [Full Text] [Related]
14. Special peptidyl-tRNA molecules can promote translational frameshifting without slippage. Vimaladithan A, Farabaugh PJ. Mol Cell Biol; 1994 Dec 25; 14(12):8107-16. PubMed ID: 7969148 [Abstract] [Full Text] [Related]
15. Preferential import of queuosine-modified tRNAs into Trypanosoma brucei mitochondrion is critical for organellar protein synthesis. Kulkarni S, Rubio MAT, Hegedűsová E, Ross RL, Limbach PA, Alfonzo JD, Paris Z. Nucleic Acids Res; 2021 Aug 20; 49(14):8247-8260. PubMed ID: 34244755 [Abstract] [Full Text] [Related]
16. Structural Insights into riboswitch control of the biosynthesis of queuosine, a modified nucleotide found in the anticodon of tRNA. Kang M, Peterson R, Feigon J. Mol Cell; 2009 Mar 27; 33(6):784-90. PubMed ID: 19285444 [Abstract] [Full Text] [Related]
17. Identification and codon reading properties of 5-cyanomethyl uridine, a new modified nucleoside found in the anticodon wobble position of mutant haloarchaeal isoleucine tRNAs. Mandal D, Köhrer C, Su D, Babu IR, Chan CT, Liu Y, Söll D, Blum P, Kuwahara M, Dedon PC, Rajbhandary UL. RNA; 2014 Feb 27; 20(2):177-88. PubMed ID: 24344322 [Abstract] [Full Text] [Related]
18. Structural analysis of the interaction of the tRNA modifying enzymes Tgt and QueA with a substrate tRNA. Mueller SO, Slany RK. FEBS Lett; 1995 Mar 20; 361(2-3):259-64. PubMed ID: 7698334 [Abstract] [Full Text] [Related]
19. Mutations in the anticodon stem affect removal of introns from pre-tRNA in Saccharomyces cerevisiae. Mathison L, Winey M, Soref C, Culbertson MR, Knapp G. Mol Cell Biol; 1989 Oct 20; 9(10):4220-8. PubMed ID: 2685549 [Abstract] [Full Text] [Related]
20. Analysis of Queuosine tRNA Modification Using APB Northern Blot Assay. Cirzi C, Tuorto F. Methods Mol Biol; 2021 Oct 20; 2298():217-230. PubMed ID: 34085248 [Abstract] [Full Text] [Related] Page: [Next] [New Search]